scholarly journals Marine carbonate system evolution during the EPOCA Arctic pelagic ecosystem experiment in the context of simulated Arctic ocean acidification

2012 ◽  
Vol 9 (11) ◽  
pp. 15541-15565 ◽  
Author(s):  
R. G. J. Bellerby ◽  
A. Silyakova ◽  
G. Nondal ◽  
D. Slagstad ◽  
J. Czerny ◽  
...  

Abstract. A major, potential stressor of marine systems is the changing water chemistry following increasing seawater carbon dioxide concentration (CO2), commonly termed ocean acidification. In order to understand how an Arctic pelagic ecosystem may respond to future CO2, a deliberate ocean acidification and nutrient perturbation study was undertaken in an Arctic fjord. The initial setting and evolution of seawater carbonate chemistry were investigated. Additions of carbon dioxide resulted in a wide range of ocean acidification scenarios. This study documents the changes to the CO2 system throughout the study following net biological consumption and gas exchange with the atmosphere. In light of the common practice of extrapolating results to cover regions away from experimental conditions, a modelling study was also performed to assess the representativeness, in the context of the simulated present and future carbonate system, of the experimental study region to both the near and wider Arctic region. The mesocosm experiment represented the range of simulated marine carbonate system for the coming century and beyond (pCO2 to 1420 μatm) and thus extrapolations may be appropriate to ecosystems exhibiting similar levels of CO2 system drivers. However, as the regional ocean acidification was very heterogenous and did not follow changes in atmospheric CO2, care should be taken in extrapolating the mesocosm response to other regions based on atmospheric CO2 scenarios.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Karolina Kula ◽  
Agnieszka Kącka-Zych ◽  
Agnieszka Łapczuk-Krygier ◽  
Radomir Jasiński

Abstract The large and significant increase in carbon dioxide concentration in the Earth’s atmosphere is a serious problem for humanity. The amount of CO2 is increasing steadily which causes a harmful greenhouse effect that damages the Earth’s climate. Therefore, one of the current trends in modern chemistry and chemical technology are issues related to its utilization. This work includes the analysis of the possibility of chemical consumption of CO2 in Diels-Alder processes under non-catalytic and catalytic conditions after prior activation of the C=O bond. In addition to the obvious benefits associated with CO2 utilization, such processes open up the possibility of universal synthesis of a wide range of internal carboxylates. These studies have been performed in the framework of Molecular Electron Density Theory as a modern view of the chemical reactivity. It has been found, that explored DA reactions catalyzed by Lewis acids with the boron core, proceeds via unique stepwise mechanism with the zwitterionic intermediate. Bonding Evolution Theory (BET) analysis of the molecular mechanism associated with the DA reaction between cyclopentadiene and carbon dioxide indicates that it takes place thorough a two-stage one-step mechanism, which is initialized by formation of C–C single bond. In turn, the DA reaction between cyclopentadiene and carbon dioxide catalysed by BH3 extends in the environment of DCM, indicates that it takes place through a two-step mechanism. First path of catalysed DA reaction is characterized by 10 different phases, while the second by eight topologically different phases.


2021 ◽  
Vol 6 (6) ◽  
pp. 212-214
Author(s):  
AA El-Meligi

There is a significant effect of carbon dioxide on the acidification of the ocean. This research focuses on the acidification of the ocean and its effect on the animal life in the ocean. Also, it focuses on the effect of carbon dioxide concentration in the atmosphere on the ocean acidification. The data are collected from the research institutions and laboratories, such as National Snow and Ice Data Center (NSIDC), Japan, National Oceanic and Atmospheric Administration (NOAA), USA, Mauna Loa Observatory in Hawaii, and other sources of research about acidification of ocean. The results show that the acidity increases with increasing the amount of carbon dioxide in the atmosphere. This is because ocean absorbs nearly 50% of carbon dioxide from the atmosphere. Carbonate ions (CO32-) will be used in forming carbonic acid, which will increase the acidity of the water. Increasing the acidity of water will affect building of the animal Skeleton. It is recommended to reduce the amount of carbon dioxide in the atmosphere; therefore the acidity will be decreased in the ocean.


2021 ◽  
Author(s):  
Georgios Vagenas ◽  
Theano Iliopoulou ◽  
Panayiotis Dimitriadis ◽  
Demetris Koutsoyiannis

<p>Since the pre-industrial era at the end of the 18<sup>th</sup> century, the atmospheric carbon dioxide concentration (CO<sub>2</sub>) has increased by 47.46% from the level of 280 ppmv (parts per million volume) to 412.89 ppmv (Mauna Loa – NOAA Station, November 2020). These increased concentrations caused by natural & anthropogenic activities, interact with the aquatic environment which acts as a safety valve. Nevertheless, the absorbed CO<sub>2 </sub>amounts undergo chemical transformations, resulting in increasing ionized concentrations that can significantly reduce the water’s pH, a process described as ocean acidification. Here, we use the HOT (Hawaii-Ocean-Time series) to perform time series analysis for temperature, carbon dioxide partial pressure and pH. More specifically, we analyze their temporal changes in month and annual time lag. Then, we proceed in comparisons with relevant studies on atmospheric data to evaluate the produced results. Finally, we make an effort to disentangle the results with simplified assumptions connected with the observed impact of ocean acidification on the aquatic ecosystems.</p>


2020 ◽  
Vol 33 (9) ◽  
pp. 3413-3429 ◽  
Author(s):  
David M. Romps

AbstractEven in a small domain, it can be prohibitively expensive to run cloud-resolving greenhouse gas warming experiments due to the long equilibration time. Here, a technique is introduced that reduces the computational cost of these experiments by an order of magnitude: instead of fixing the carbon dioxide concentration and equilibrating the sea surface temperature (SST), this technique fixes the SST and equilibrates the carbon dioxide concentration. Using this approach in a cloud-resolving model of radiative–convective equilibrium (RCE), the equilibrated SST is obtained as a continuous function of carbon dioxide concentrations spanning 1 ppmv to nearly 10 000 ppmv, revealing a dramatic increase in equilibrium climate sensitivity (ECS) at higher temperatures. This increase in ECS is due to both an increase in forcing and a decrease in the feedback parameter. In addition, the technique is used to obtain the direct effects of carbon dioxide (i.e., the rapid adjustments) over a wide range of SSTs. Overall, the direct effect of carbon dioxide offsets a quarter of the increase in precipitation from warming, reduces the shallow cloud fraction by a small amount, and has no impact on convective available potential energy (CAPE).


2014 ◽  
Vol 11 (22) ◽  
pp. 6293-6305 ◽  
Author(s):  
L. Xue ◽  
W. Yu ◽  
H. Wang ◽  
L.-Q. Jiang ◽  
L. Feng ◽  
...  

Abstract. Information on changes in the oceanic carbon dioxide (CO2) concentration and air–sea CO2 flux as well as on ocean acidification in the Indian Ocean is very limited. In this study, temporal changes of the inorganic carbon system in the eastern equatorial Indian Ocean (EIO, 5° N–5° S, 90–95° E) are examined using partial pressure of carbon dioxide (pCO2) data collected in May 2012, historical pCO2 data since 1962, and total alkalinity (TA) data calculated from salinity. Results show that sea surface pCO2 in the equatorial belt (2° N–2° S, 90–95° E) increased from ∼307 μatm in April 1963 to ∼373 μatm in May 1999, ∼381 μatm in April 2007, and ∼385 μatm in May 2012. The mean rate of pCO2 increase in this area (∼1.56 μatm yr−1) was close to that in the atmosphere (∼1.46 μatm yr−1). Despite the steady pCO2 increase in this region, no significant change in air–sea CO2 fluxes was detected during this period. Ocean acidification as indicated by pH and saturation states for carbonate minerals has indeed taken place in this region. Surface water pH (total hydrogen scale) and saturation state for aragonite (Ωarag), calculated from pCO2 and TA, decreased significantly at rates of −0.0016 ± 0.0001 and −0.0095 ± 0.0005 yr−1, respectively. The respective contributions of temperature, salinity, TA, and dissolved inorganic carbon (DIC) to the increase in surface pCO2 and the decreases in pH and Ωarag are quantified. We find that the increase in DIC dominated these changes, while contributions from temperature, salinity, and TA were insignificant. The increase in DIC was most likely associated with the increasing atmospheric CO2 concentration, and the transport of accumulated anthropogenic CO2 from a CO2 sink region via basin-scale ocean circulations. These two processes may combine to drive oceanic DIC to follow atmospheric CO2 increase.


1978 ◽  
Vol 192 (1) ◽  
pp. 39-48 ◽  
Author(s):  
B. Bull ◽  
M. A. Voisey

Measurements of carbon dioxide concentrations in the exhaust and in the crankcase of two different types of single-cylinder, supercharged diesel engines have been used to determine the amount of exhaust gas reaching the crankcase as piston ring blowby and as leakage through the exhaust valve stem-to-guide clearance. Over a wide range of operating conditions in both engines the carbon dioxide concentration was found to be more dependent on engine fuelling rate per hour than on fuel input per stroke. It was established that blowby through the exhaust valve guide was a major contributor to crankcase contamination. A simple method has been devised, requiring only minor modifications to the engine, that permits the blowby through the piston ring pack and the exhaust valve guides to be determined separately in turbocharged production engines.


2018 ◽  
Vol 66 (2) ◽  
pp. 234-242 ◽  
Author(s):  
Adriana Rodrigues Perretti ◽  
Ana Cecília Rizzatti de Albergaria-Barbosa ◽  
Rodrigo Kerr ◽  
Leticia Cotrim da Cunha

2009 ◽  
Vol 6 (10) ◽  
pp. 2145-2153 ◽  
Author(s):  
K. G. Schulz ◽  
J. Barcelos e Ramos ◽  
R. E. Zeebe ◽  
U. Riebesell

Abstract. Increasing atmospheric carbon dioxide (CO2) through human activities and invasion of anthropogenic CO2 into the surface ocean alters the seawater carbonate chemistry, increasing CO2 and bicarbonate (HCO3−) at the expense of carbonate ion (CO32−) concentrations. This redistribution in the dissolved inorganic carbon (DIC) pool decreases pH and carbonate saturation state (Ω). Several components of the carbonate system are considered potential key variables influencing for instance calcium carbonate precipitation in marine calcifiers such as coccolithophores, foraminifera, corals, mollusks and echinoderms. Unravelling the sensitivities of marine organisms and ecosystems to CO2 induced ocean acidification (OA) requires well-controlled experimental setups and accurate carbonate system manipulations. Here we describe and analyse the chemical changes involved in the two basic approaches for carbonate chemistry manipulation, i.e. changing DIC at constant total alkalinity (TA) and changing TA at constant DIC. Furthermore, we briefly introduce several methods to experimentally manipulate DIC and TA. Finally, we examine responses obtained with both approaches using published results for the coccolithophore Emiliania huxleyi. We conclude that under most experimental conditions in the context of ocean acidification DIC and TA manipulations yield similar changes in all parameters of the carbonate system, which implies direct comparability of data obtained with the two basic approaches for CO2 perturbation.


In blue-green algae the hydrogen donors and carbon skeletons required in the fixation of elementary nitrogen may be supplied by the photosynthetic mechanism. Study of the kinetic relationships between the photosynthetic assimilation of carbon and the assimilation of nitrogen into the cell material of Anabaena cylindrica Lemm. has demonstrated correlations between the rates of the two processes consonant with the existence of such biochemical connexions. The effects of light intensity, carbon-dioxide concentration and nitrogen concentration were each studied at four different temperatures by determination of changes in amounts of cell carbon and cell nitrogen in cultures grown for 48 h. Temperature was found to have the most marked differential effect, both low and high temperatures depressing nitrogen assimilation to a greater extent than carbon assimilation. At any given temperature there was a close correlation between the rates of the two processes over a wide range of variation in other factors. Both carbon and nitrogen assimilation were found to be inhibited by relatively low concentrations of carbon dioxide. The rate of carbon assimilation per unit amount of cell nitrogen was found to be related in the usual way to light intensity, but to be reduced at low nitrogen concentrations. The relative rate of nitrogen assimilation was likewise found to be related in the expected way to nitrogen concentration but to increase with light intensity and to be reduced at carbon-dioxide concentrations limiting for carbon assimilation.


1972 ◽  
Vol 50 (4) ◽  
pp. 883-889 ◽  
Author(s):  
F. D. H. Macdowall

Marquis wheat was grown in growth rooms with four different concentrations of carbon dioxide and four to seven different intensities of light in a 16-h photoperiod at 25 °C. Growth was expressed quantitatively as the pseudo-first-order rate coefficient. Carbon dioxide stimulated growth, but the effect was greater the lower the light intensity in opposition to the known effect on photosynthesis. Carbon dioxide and light, in effect, did not influence the "rate" of growth of wheat additively but, rather, mutually compensated over a wide range. The growth coefficient of the roots was a little less than that of the shoots at all carbon dioxide concentrations and light intensities, probably owing to the cost of translocation. However, root growth benefited most from carbon dioxide enrichment at low light intensities. At intermediate light intensity there appeared to be a carbon dioxide concentration optimal for shoot growth. Carbon dioxide enrichment did not influence the maximum growth coefficient of Marquis wheat with respect to light intensity. The light-using efficiency of growth, calculated for vanishingly low light intensity at which it is maximal, was maximal for shoots at 1300 ppm CO2 but that for laminal area and root dry weight increased with CO2 to 2200 ppm at which the value for "leaves" was nearly fourfold that for roots. Unlike photosynthesis, the stimulation of growth by raised CO2 concentration was accomplished by increased efficiency of, and not capacity for, the net photosynthetic use of light.


Sign in / Sign up

Export Citation Format

Share Document