scholarly journals Soil warming in a cool-temperate mixed forest with peat soil enhanced heterotrophic and basal respiration rates but <i>Q</i><sub>10</sub> remained unchanged

2011 ◽  
Vol 8 (4) ◽  
pp. 6415-6445 ◽  
Author(s):  
M. Aguilos ◽  
K. Takagi ◽  
N. Liang ◽  
Y. Watanabe ◽  
S. Goto ◽  
...  

Abstract. We conducted soil warming experiment in a cool-temperate forest with peat soil in northern Japan, during the snowless seasons of 2007–2009. Our objective was to determine whether or not the heterotrophic respiration rate and the temperature sensitivity would change by soil warming. We elevated the soil temperature by 3 °C at 5 cm depth by means of overhead infrared heaters and continuously measured soil CO2 fluxes by using a fifteen-channel automated chamber system. Trenching treatment was also carried out to separate heterotrophic respiration and root respiration from the total soil respiration. The fifteen chambers were divided into three groups each with five replications for the control, unwarmed-trenched, and warmed-trenched treatments. We found that heterotrophic respiration contributed 71 % of the total soil respiration with the remaining 29 % accounted to autotrophic respiration. Soil warming enhanced heterotrophic respiration by 74 % (mean 6.11 ± 3.07 S.D. μmol m−2 s–1) as compared to the unwarmed-trenched treatment (mean 3.52 ± 1.74 μmol m−2 s–1). Soil CO2 efflux, however, was weakly correlated with soil moisture, probably because the volumetric soil moisture (33–46 %) was within a plateau region for root and microbial activities. The enhancement in heterotrophic respiration with soil warming in our study suggests that global warming will accelerate the loss of carbon from forested peatlands more seriously than other upland forest soils. On the other hand, soil warming did not cause significant change in the temperature sensitivity, Q10, (2.79 and 2.74 determined using hourly efflux data for unwarmed- and warmed-trenched, respectively), but increased their basal respiration rate at 0 °C (0.93 and 1.21 μmol m−2 s−1, respectively). Results suggest that if we predict the soil heterotrophic respiration rate in future warmer environment using the current relationship between soil temperature and heterotrophic respiration, the rate can be underestimated.

2014 ◽  
Vol 618 ◽  
pp. 380-387
Author(s):  
Jiang Ming Ma ◽  
Meng Wu ◽  
Ting Ting Zhan ◽  
Feng Tian ◽  
Shi Chu Liang

This experiment was conducted on the 4 years old Eucalyptus plantation in Beihai of Guangxi, southern China. From January to December 2013, in the spring, summer, autumn and winter, seasonal variation and diurnal variation of the soil respiration and its environmental factors had been observed, respectively. The results showed that: (1) Soil respirations has obvious seasonal characteristics, the soil respiration rate in each seasons showed that: summer> spring > autumn > winter. The heterotrophic respiration rate was higher than the autotrophic respiration rate. The contribution of autotrophic respiration rate in winter was higher than that in other three seasons. (2) Soil respiration has obvious diurnal characteristic, it could be expressed as a single-peak curve. But the maximum value of soil respiration appeared in different times in different seasons. (3) There existed positive correlation index exponential relationships between the soil temperature and the soil respiration rate and its components. Soil temperature changes could explain soil respiration, autotrophic respiration and heterotrophic respiration by 90.2%, 27.5% and 92.8%. Temperature sensitivity showed following order: the heterotrophic respiration rate> the soil respiration rate> the autotrophic respiration rate, in terms of affected by temperature, the heterotrophic respiration was higher than the autotrophic respiration. (4) There were notable positive correlations between soil moisture content and soil respiration rate. Obviously, soil moisture content could promote soil respiration in a certain range.


2018 ◽  
Vol 40 (2) ◽  
pp. 153 ◽  
Author(s):  
Xuexia Wang ◽  
Yali Chen ◽  
Yulong Yan ◽  
Zhiqiang Wan ◽  
Ran Chao ◽  
...  

The response of soil respiration to simulated climatic warming and increased precipitation was evaluated on the arid–semi-arid Stipa steppe of Inner Mongolia. Soil respiration rate had a single peak during the growing season, reaching a maximum in July under all treatments. Soil temperature, soil moisture and their interaction influenced the soil respiration rate. Relative to the control, warming alone reduced the soil respiration rate by 15.6 ± 7.0%, whereas increased precipitation alone increased the soil respiration rate by 52.6 ± 42.1%. The combination of warming and increased precipitation increased the soil respiration rate by 22.4 ± 11.2%. When temperature was increased, soil respiration rate was more sensitive to soil moisture than to soil temperature, although the reverse applied when precipitation was increased. Under the experimental precipitation (20% above natural rainfall) applied in the experiment, soil moisture was the primary factor limiting soil respiration, but soil temperature may become limiting under higher soil moisture levels.


2020 ◽  
Vol 1 (2) ◽  
pp. 171-179

Soil respiration is a major component of global carbon cycle. Therefore, it is crucial to understand the environmental controls on soil respiration for evaluating potential response of ecosystems to climate change. In a temperate deciduous forest (located in Northern-Hungary) we added or removed aboveground and belowground litter to determine total soil respiration. We investigated the relationship between total soil CO2 efflux, soil moisture, and soil temperature. Soil CO2 efflux was measured at each plot using soda-lime method. Temperature sensitivity of soil respiration (Q10) was monitored via measuring soil temperature on an hourly basis, while soil moisture was determined monthly. Soil respiration increased in control plots from the second year after implementing the treatment, but results showed fluctuations from one year to another. The effect of doubled litter was less significant than the effect of removal. Removed litter and root inputs caused substantial decrease in soil respiration. We found that temperature was more influential in the control of soil respiration than soil moisture. In plots with no litter Q10 varied in the largest interval. For treatment with doubled litter layer, temperature sensitivity of CO2 efflux did not change considerably. The effect of increasing soil temperature is more conspicuous to soil respiration in litter removal treatments since lack of litter causes greater irradiation. When exclusively leaf litter was considered, the effect of temperature on soil respiration was lower in treatments with added litter than with removed litter. Our results reveal that soil life is impacted by the absence of organic matter, rather than by an excess of organic matter. Results of CO2 emission from soils with different organic matter content can contribute to sustainable land use, considering the changed climatic factors caused by global climate change.


2017 ◽  
Author(s):  
Emilia Urbanek ◽  
Stefan H. Doerr

Abstract. Soil CO2 emissions are strongly dependent on water distribution in soil pores, which in turn can be affected by soil water repellency (SWR; hydrophobicity). SWR restricts infiltration and movement of water, affecting soil hydrology as well as biological and chemical processes. Effects of SWR on soil carbon dynamics and specifically on soil respiration (CO2 efflux) have been studied in a few laboratory experiments but they remain poorly understood. Existing studies suggest that soil respiration is reduced in water repellent soils, but the responses of soil CO2 efflux to varying water distribution created by SWR are not yet known. Here we report on the first field-based study that tests whether soil water repellency indeed reduces soil respiration, based on in situ field measurements carried out over three consecutive years at a grassland and pine forest site under the humid temperate climate of the UK. CO2 efflux was reduced on occasions when soil exhibited consistently high SWR and low soil moisture following long dry spells. However, the highest respiration rates occurred not when SWR was absent, but when SWR, and thus soil moisture, was spatially patchy, a pattern observed for the majority of the measurement period. This somewhat surprising phenomenon can be explained by SWR-induced preferential flow, directing water and nutrients to microorganisms decomposing organic matter concentrated in hot spots near preferential flow paths. Water repellent zones provide air-filled pathways through the soil, which facilitate soil-atmosphere O2 and CO2 exchanges. This study demonstrates that SWR have contrasting effects on CO2 fluxes and, when spatially-variable, can enhance CO2 efflux. Spatial variability in SWR and associated soil moisture distribution needs to be considered when evaluating the effects of SWR on soil carbon dynamics under current and predicted future climatic conditions.


2020 ◽  
Author(s):  
Stefano Manzoni ◽  
Arjun Chakrawal ◽  
Thomas Fischer ◽  
Joshua P. Schimel ◽  
Amilcare Porporato ◽  
...  

Abstract. Soil drying and wetting cycles promote carbon (C) release through large heterotrophic respiration pulses at rewetting, known as Birch effect. Empirical evidence shows that drier conditions before rewetting and larger changes in soil moisture at rewetting cause larger respiration pulses. Because soil moisture varies in response to rainfall, also these respiration pulses depend on the random timing and intensity of precipitation. In addition to rewetting pulses, heterotrophic respiration continues during soil drying, eventually ceasing when soils are too dry to sustain microbial activity. The importance of respiration pulses in contributing to the overall soil respiration flux has been demonstrated empirically, but no theoretical investigation has so far evaluated how the relative contribution of these pulses may change along climatic gradients or as precipitation regimes shift in a given location. To fill this gap, we start by assuming that rewetting pulses and respiration rates during soil drying can be treated as random variables dependent on soil moisture fluctuations, and develop a stochastic model for soil heterotrophic respiration rates that analytically links the statistical properties of respiration to those of precipitation. Model results show that both the mean rewetting pulse respiration and the mean respiration during drying increase with increasing mean precipitation. However, the contribution of respiration pulses to the total heterotrophic respiration increases with decreasing precipitation frequency and to a lesser degree with decreasing precipitation depth, leading to an overall higher contribution of respiration pulses under future more intermittent and intense precipitation. Moreover, the variability of both components of soil respiration is also predicted to increase under these conditions. Therefore, our results suggest that with future more intermittent precipitation, respiration pulses and the associated nutrient release will intensify and become more variable, contributing more to soil biogeochemical cycling.


Soil Research ◽  
2008 ◽  
Vol 46 (8) ◽  
pp. 727 ◽  
Author(s):  
XiaoGuo Wang ◽  
Bo Zhu ◽  
MeiRong Gao ◽  
YanQiang Wang ◽  
XunHua Zheng

CO2 emissions from soils were measured under 3 land-use types at the adjacent plots of forest plantation, grassland, and cropland from January 2005 to December 2006. Mean soil CO2 efflux rates measured during the 2-year study varied from 59 to 527 mg CO2/m2.h in forest plantation, 37 to 498 mg CO2/m2.h in grassland, and 32 to 397 mg CO2/m2.h in cropland. Soil respiration in the 3 types of land-use showed a similar seasonal pattern in variation during both years, in which the single-peaked curve occurred in early summer and the minimum in winter. In particular, the date of maximum soil CO2 efflux rate in cropland occurred about 30 days earlier than in forest and grassland in both 2005 and 2006. The relationship of soil respiration rate (R) with soil temperature (T ) and soil moisture (W ) fitted well to the equation R = β0eβ1TW β2 (a, b, c were constants) than other univariate models which consider soil water content or soil temperature alone. Soil temperature and soil moisture together explained 69–92% of the temporal variation in soil respiration in the 3 land-use types. Temperature sensitivity of soil respiration (Q10) was affected positively by soil moisture of top 0.1 m layer and negatively by soil temperature at 0.05 m depth. The relationship between Q10 values and soil temperature (T ) or soil moisture (W ) indicated that a 1°C increase in soil temperature at 0.05 m depth will reduce the Q10 value by 0.07, 0.05, and 0.06 in forest, grassland, and cropland, respectively. Similarly, a 1% decrease in soil moisture of the top 0.1 m layer will reduce the Q10 value by 0.10, 0.09, and 0.11 in forest, grassland, and cropland.


PLoS ONE ◽  
2019 ◽  
Vol 14 (12) ◽  
pp. e0226909 ◽  
Author(s):  
Charles Marty ◽  
Joanie Piquette ◽  
Hubert Morin ◽  
Denis Bussières ◽  
Nelson Thiffault ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document