scholarly journals Millennial minimum temperature variations in the Qilian Mountains, China: evidence from tree rings

2014 ◽  
Vol 10 (5) ◽  
pp. 1763-1778 ◽  
Author(s):  
Y. Zhang ◽  
X. M. Shao ◽  
Z.-Y. Yin ◽  
Y. Wang

Abstract. A 1343-year tree-ring chronology was developed from Qilian junipers in the central Qilian Mountains of the northeastern Tibetan Plateau (TP), China. The climatic implications of this chronology were investigated using simple correlation, partial correlation and response function analyses. The chronology was significantly positively correlated with temperature variables prior to and during the growing season, especially with monthly minimum temperature. Minimum temperature anomalies from January to August since AD 670 were then reconstructed based on the tree-ring chronology. The reconstruction explained 58% of the variance in the instrumental temperature records during the calibration period (1960–2012) and captured the variation patterns in minimum temperature at the annual to centennial timescales over the past millennium. The most recent 50 years were the warmest period, while 1690–1880 was the coldest period since AD 670. Comparisons with other temperature series from neighbouring regions and for the Northern Hemisphere as a whole supported the validity of our reconstruction and suggested that it provided a good regional representation of temperature change in the northeastern Tibetan Plateau. The results of wavelet analysis showed the occurrence of significant quasi-periodic patterns at a number of recurring periods (2–4, 40–50, and 90–170 years), which were consistent with those associated with El Niño–Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and solar activity. The comparison between the reconstructed temperature and the index of tropical volcanic radiative forcing indicated that some cold events recorded by tree rings may be due to the impact of tropical volcanic eruptions.

2014 ◽  
Vol 10 (1) ◽  
pp. 341-380 ◽  
Author(s):  
Y. Zhang ◽  
X. Shao ◽  
Z.-Y. Yin ◽  
Y. Wang

Abstract. A 1342 yr-long tree-ring chronology was developed from Qilian junipers in the central Qilian Mountains of the north-eastern Tibetan Plateau, China. The climatic implications of this chronology were investigated using simple correlation, partial correlation and response function analyses. The chronology was significantly positively correlated with temperature variables during the pre- and current growing seasons, especially with minimum temperature. The variability of the mean minimum temperature from January to August since 670 AD was then reconstructed based on the tree-ring chronology. The reconstruction explained 58.5% of the variance in the instrumental temperature records during the calibration period (1960–2011) and captured the variation patterns in minimum temperature at the annual to centennial time scales over the past millennium. The most recent 50 yr were the warmest period, while 1690–1880 was the coldest period since 670 AD. Comparisons with other temperature series from neighbouring regions and for the Northern Hemisphere as a whole supported the validity of our reconstruction and suggested that it provided a good regional representation of temperature change in the north-eastern Tibetan Plateau. The results of multi-taper spectral analysis showed the occurrence of significant quasi-periodic behaviour at a number of periods (2–3, 28.8–66.2, 113.6–169.5, and 500 yr), which were consistent with those associated with El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and solar activity. Some reconstructed cold events may have close relationship with the volcanic eruptions.


2012 ◽  
Vol 8 (1) ◽  
pp. 205-213 ◽  
Author(s):  
C. Shi ◽  
V. Daux ◽  
Q.-B. Zhang ◽  
C. Risi ◽  
S.-G. Hou ◽  
...  

Abstract. A tree-ring δ18O chronology of Linzhi spruce, spanning from AD 1781 to 2005, was developed in Bomi, Southeast Tibetan Plateau (TP). During the period with instrumental data (AD 1961–2005), this record is strongly correlated with regional CRU (Climate Research Unit) summer cloud data, which is supported by a precipitation δ18O simulation conducted with the isotope-enabled atmospheric general circulation model LMDZiso. A reconstruction of a regional summer cloud index, based upon the empirical relationship between cloud and diurnal temperature range, was therefore achieved. This index reflects regional moisture variability in the past 225 yr. The climate appears drier and more stable in the 20th century than previously. The drying trend in late 19th century of our reconstruction is consistent with a decrease in the TP glacier accumulation recorded in ice cores. An exceptional dry decade is documented in the 1810s, possibly related to the impact of repeated volcanic eruptions on monsoon flow.


2014 ◽  
Vol 111 (8) ◽  
pp. 2903-2908 ◽  
Author(s):  
B. Yang ◽  
C. Qin ◽  
J. Wang ◽  
M. He ◽  
T. M. Melvin ◽  
...  

Geomorphology ◽  
2020 ◽  
Vol 353 ◽  
pp. 107021 ◽  
Author(s):  
Zhenhua Ma ◽  
Zhantao Feng ◽  
Tingjiang Peng ◽  
Shanpin Liu ◽  
Meng Li ◽  
...  

2019 ◽  
Vol 15 (2) ◽  
pp. 685-700 ◽  
Author(s):  
Olga V. Churakova (Sidorova) ◽  
Marina V. Fonti ◽  
Matthias Saurer ◽  
Sébastien Guillet ◽  
Christophe Corona ◽  
...  

Abstract. Stratospheric volcanic eruptions have far-reaching impacts on global climate and society. Tree rings can provide valuable climatic information on these impacts across different spatial and temporal scales. To detect temperature and hydroclimatic changes after strong stratospheric Common Era (CE) volcanic eruptions for the last 1500 years (535 CE unknown, 540 CE unknown, 1257 CE Samalas, 1640 CE Parker, 1815 CE Tambora, and 1991 CE Pinatubo), we measured and analyzed tree-ring width (TRW), maximum latewood density (MXD), cell wall thickness (CWT), and δ13C and δ18O in tree-ring cellulose chronologies of climate-sensitive larch trees from three different Siberian regions (northeastern Yakutia – YAK, eastern Taimyr – TAY, and Russian Altai – ALT). All tree-ring proxies proved to encode a significant and specific climatic signal of the growing season. Our findings suggest that TRW, MXD, and CWT show strong negative summer air temperature anomalies in 536, 541–542, and 1258–1259 at all studied regions. Based on δ13C, 536 was extremely humid at YAK, as was 537–538 in TAY. No extreme hydroclimatic anomalies occurred in Siberia after the volcanic eruptions in 1640, 1815, and 1991, except for 1817 at ALT. The signal stored in δ18O indicated significantly lower summer sunshine duration in 542 and 1258–1259 at YAK and 536 at ALT. Our results show that trees growing at YAK and ALT mainly responded the first year after the eruptions, whereas at TAY, the growth response occurred after 2 years. The fact that differences exist in climate responses to volcanic eruptions – both in space and time – underlines the added value of a multiple tree-ring proxy assessment. As such, the various indicators used clearly help to provide a more realistic picture of the impact of volcanic eruption on past climate dynamics, which is fundamental for an improved understanding of climate dynamics, but also for the validation of global climate models.


Radiocarbon ◽  
2020 ◽  
Vol 62 (4) ◽  
pp. 953-961 ◽  
Author(s):  
Ronny Friedrich ◽  
Bernd Kromer ◽  
Lukas Wacker ◽  
Jesper Olsen ◽  
Sabine Remmele ◽  
...  

ABSTRACTAnnually resolved tree-ring samples of the time period 1625–1510 BCE were analyzed from the German oak tree-ring chronology. Blocks of the same tree rings were previously used to generate IntCal calibration data. The new dataset shows an offset to the calibration data IntCal13 of 24 years and resembles annual data for the same time period derived from tree-ring records in other growth locations. A subset of samples of the period 1625–1585 BCE was additionally measured in three other laboratories (ETH, AAR, AA) for quality control.


Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 247
Author(s):  
Zhipeng Dong ◽  
Dai Chen ◽  
Jianhua Du ◽  
Guang Yang ◽  
Maowei Bai ◽  
...  

Humid subtropical China is an “oasis” relative to other dry subtropics of the world due to the prevailing of the East Asian summer monsoon (EASM). Although many long climate sensitive tree-rings have been published to understand the historical climate change over various regions in China, long tree-ring chronologies in humid subtropical China are rare due to the difficulty to find old growth trees. This study established a tree-ring chronology spanning from 1776 to 2016 from Cryptomeria fortunei Hooibrenk ex Otto et Dietr in Liancheng area of humid subtropical China, which is also currently the longest chronology in Fujian province. Similar to the climate-growth relationships in neighboring regions, our tree-ring chronology is limited by cold temperature in winter and spring and drought in summer. In addition, a drought stress before the growing season also played a role in limiting the growth of our tree rings. Our climate sensitive tree rings showed different correlations with the Pacific Decadal Oscillation (PDO) in different periods, possibly via modulation of the EASM.


Sign in / Sign up

Export Citation Format

Share Document