scholarly journals A 241-Year Cryptomeria fortune Tree-Ring Chronology in Humid Subtropical China and Its Linkages with the Pacific Decadal Oscillation

Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 247
Author(s):  
Zhipeng Dong ◽  
Dai Chen ◽  
Jianhua Du ◽  
Guang Yang ◽  
Maowei Bai ◽  
...  

Humid subtropical China is an “oasis” relative to other dry subtropics of the world due to the prevailing of the East Asian summer monsoon (EASM). Although many long climate sensitive tree-rings have been published to understand the historical climate change over various regions in China, long tree-ring chronologies in humid subtropical China are rare due to the difficulty to find old growth trees. This study established a tree-ring chronology spanning from 1776 to 2016 from Cryptomeria fortunei Hooibrenk ex Otto et Dietr in Liancheng area of humid subtropical China, which is also currently the longest chronology in Fujian province. Similar to the climate-growth relationships in neighboring regions, our tree-ring chronology is limited by cold temperature in winter and spring and drought in summer. In addition, a drought stress before the growing season also played a role in limiting the growth of our tree rings. Our climate sensitive tree rings showed different correlations with the Pacific Decadal Oscillation (PDO) in different periods, possibly via modulation of the EASM.

Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1180
Author(s):  
Qiang Li ◽  
Yu Liu ◽  
Ruolan Deng ◽  
Ruoshi Liu ◽  
Huiming Song ◽  
...  

Paleoclimate research, which involves the study of climate and environmental changes in historical and geological periods, is typically conducted using high-resolution paleoclimatic proxies, such as tree rings, historical documentations, stalagmite, and ice core. Although each paleoclimate proxy has its own merits in paleoclimatic research, reconstructions based on a single proxy may suffer from shortcomings, including insufficient reliability and low coverage of the representative area. It may be possible to overcome these shortcomings by combining multi-paleoclimatic proxies to understand paleoclimatic changes. In this study, we attempt to combine tree-ring stable oxygen isotope ratio (δ18O), tree-ring width, and stalagmite thickness data as well as historical records to establish a 320-year (1675–1994) time series using principal component analysis in the water-scarce North China Plain (NCP). The results show that the first principal component (PC1) series is closely related to regional precipitation and the maximum temperature in summer. The spatial correlation pattern indicates that the PC1 series can represent the regional hydroclimate variation not only in the NCP but also in all of northern China. The significant (p < 0.001) correlations between the PC1 series and several East Asian summer monsoon (EASM) indices prove that the PC1 reflects the intensity of the EASM. The PC1 series is consistent with the interannual variations of two reconstructed solar activity correlation indexes (r = 0.48 and 0.46, n = 320, and p < 0.001). The results indicate that the hydroclimate variation in the NCP is affected by large-scale atmospheric circulations, such as EASM and solar activity, and shows the potential of combining multiple paleoclimate proxies for analyzing regional climate change.


2010 ◽  
Vol 23 (17) ◽  
pp. 4525-4537 ◽  
Author(s):  
Jinhee Yoon ◽  
Sang-Wook Yeh

Abstract The influence of the Pacific decadal oscillation (PDO) on the relationship between El Niño and the northeast Asian summer monsoon (NEASM) is examined using observational datasets for the period of 1979–2007. When El Niño occurs during the boreal winter (December–February), the amount of rainfall over northeast Asia is usually above normal during the following summer (June–August). This relationship between El Niño and the NEASM is intensified when El Niño and the PDO are in phase during the previous winter. However, when El Niño and the PDO are out of phase, the relationship is weakened. The authors argue that the PDO can constructively or destructively interfere with the summer rainfall response over northeast Asia to El Niño. They follow the hypothesis that the summer rainfall over northeast Asia could be separated into two components, that is, the tropics-related component and the extratropics-related component. Then they argue that the PDO could modulate the relationship between El Niño and the NEASM through changes in the extratropics-related rainfall, which is associated with the atmospheric circulation, such as the Eurasian pattern. The conditional composites show that when El Niño and the PDO are in phase, the Eurasian-like pattern acts to enhance the extratropics-related rainfall over northeast Asia, resulting in the strengthening of the NEASM. In contrast, the Eurasian-like pattern acts to reduce the extratropics-related rainfall when El Niño and the PDO are out of phase, resulting in the weakening of the NEASM.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 717 ◽  
Author(s):  
Feng Chen ◽  
Magdalena Opała-Owczarek ◽  
Piotr Owczarek ◽  
Youping Chen

This study investigates the potential reconstruction of summer monsoon season streamflow variations in the middle reaches of the Yellow River from tree rings in the Qinling Mountains. The regional chronology is significantly positively correlated with the July–October streamflow of the middle Yellow River from 1919 to 1949, and the derived reconstruction explains 36.4% of the actual streamflow variance during this period. High streamflows occurred during 1644–1757, 1795–1806, 1818–1833, 1882–1900, 1909–1920 and 1933–1963. Low streamflows occurred during 1570–1643, 1758–1794, 1807–1817, 1834–1868, 1921–1932 and 1964–2012. High and low streamflow intervals also correspond well to the East Asian summer monsoon (EASM) intensity. Some negative correlations of our streamflow reconstruction with Indo-Pacific sea surface temperature (SST) also suggest the linkage of regional streamflow changes to the Asian summer monsoon circulation. Although climate change has some important effects on the variation in streamflow, anthropogenic activities are the primary factors mediating the flow cessation of the Yellow River, based on streamflow reconstruction.


Atmosphere ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 90
Author(s):  
Yongxiao Liang ◽  
Pengfeng Xiao

The effects of urbanization over eastern China on the East Asian summer monsoon (EASM) under different sea surface temperature background are compared using a Community Atmosphere Model (CAM5.1). Experiments of urbanization investigated by comparing two climate simulations with and without urban land cover under both positive and negative phases of Pacific Decadal Oscillation (PDO) show the spatial distribution of precipitation with ‘southern flood and northern drought’ and weakening status of EASM. The climate effect of urbanization in eastern China is significantly different from north to south. Anomalous vertical ascending motion due to the role of urbanization in the south of 30° N have induced an increase in convective available potential energy (CAPE) and precipitation increase over southern China. At the same time, the downward vertical motion occurs in the north of 30° N which cause warming over northern China. Due to the anti-cyclonic anomalies in the upper and lower layers of the north, the monsoon circulation is weakened which can reduce the precipitation. However, urbanization impact under various phases of PDO show different effect. In the 1956–1970 urbanization experiments of negative PDO phase, the downward vertical motion and anti-cyclonic anomalies in the north of 30° N are also weaker than that of positive phase of PDO in 1982–1996. In terms of this situation, the urbanization experiments of negative phase of PDO reveal that the range of the warming area over the north of 40° N is small, and the warming intensity is weak, but the precipitation change is more obvious compared with the background of positive phase of PDO.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nathsuda Pumijumnong ◽  
Achim Bräuning ◽  
Masaki Sano ◽  
Takeshi Nakatsuka ◽  
Chotika Muangsong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document