scholarly journals Palaeoclimatic oscillations in the Pliensbachian (Early Jurassic) of the Asturian Basin (Northern Spain)

2016 ◽  
Vol 12 (5) ◽  
pp. 1199-1214 ◽  
Author(s):  
Juan J. Gómez ◽  
María J. Comas-Rengifo ◽  
Antonio Goy

Abstract. One of the main controversial themes in palaeoclimatology involves elucidating whether climate during the Jurassic was warmer than the present day and if it was the same over Pangaea, with no major latitudinal gradients. There has been an abundance of evidence of oscillations in seawater temperature throughout the Jurassic. The Pliensbachian (Early Jurassic) constitutes a distinctive time interval for which several seawater temperature oscillations, including an exceptional cooling event, have been documented. To constrain the timing and magnitude of these climate changes, the Rodiles section of the Asturian Basin (Northern Spain), a well exposed succession of the uppermost Sinemurian, Pliensbachian and Lower Toarcian deposits, has been studied. A total of 562 beds were measured and sampled for ammonites, for biochronostratigraphical purposes, and for belemnites, to determine the palaeoclimatic evolution through stable isotope studies. Comparison of the recorded latest Sinemurian, Pliensbachian and Early Toarcian changes in seawater palaeotemperature with other European sections allows characterization of several climatic changes that are likely of a global extent. A warming interval partly coinciding with a δ13Cbel negative excursion was recorded at the Late Sinemurian. After a “normal” temperature interval, with temperatures close to average values of the Late Sinemurian–Early Toarcian period, a new warming interval containing a short-lived positive δ13Cbel peak, developed during the Early–Late Pliensbachian transition. The Late Pliensbachian represents an outstanding cooling interval containing a δ13Cbel positive excursion interrupted by a small negative δ13Cbel peak. Finally, the Early Toarcian represented an exceptional warming period, which has been pointed out as being responsible for the prominent Early Toarcian mass extinction.

2019 ◽  
Author(s):  
Sebastian Stumpf ◽  
Faviel A. López-Romero ◽  
Jürgen Kriwet

The Early Jurassic represents a crucial time interval in the evolutionary history of elasmobranchs, because the Toarcian witnessed a first major diversification, suggesting a profound reorganization of ecological niches of chondrichthyans, probably accompanied by a subsequent diversity decline of hybodontiforms within marine environments. Potential factors underlying the Toarcian elasmobranch radiation event not only include evolutionary novelties in ecological adaptations of swimming, feeding, and reproduction, but also abiotic factors such as increasing seawater temperatures and variations in eustatic sea level associated with the Toarcian Oceanic Anoxic Event (T-OAE). These events might have played an important role in the Toarcian elasmobranch diversification event by regulating diversity dynamics through the availability of higher speciation and dispersal rates. In attempt to better understand macroevolutionary patterns and processes of Jurassic chondrichthyans, we analysed the generic diversity of Pliensbachian to Aalenian elasmobranchs and hybodontiforms and explored their response to the T-OAE. In doing so, we calculated the estimated mean standing diversities (EMSD) using 10 time bins of approximately 2 Myr duration and evaluated the relationships between EMSD and variations in both seawater temperature and eustatic sea level to test whether these parameters affect the observed diversity patterns. Our data indicate profoundly different diversity dynamics of elasmobranchs and hybodontiforms. The EMSD is low in Pliensbachian to Aalenian hybodontiforms, indicating an evolutionary stasis. Conversely, a constant taxonomic increase in elasmobranchs is recorded, spanning from the Pliensbachian to the end of the Toarcian, before reaching a diversity plateau in the Aalenian. These divergent patterns might suggest that hybodontiforms were not competing with elasmobranchs, but more likely are the result of still existing taxonomic misconceptions of Jurassic hybodontiforms, mainly caused by morphological characters that are either ambiguous or broadly distributed among these anatomically rather conservative chondrichthyans. Notwithstanding this, our results indicate that variations in seawater temperature and eustatic sea level changes associated with the T-OAE were not the primary drivers underlying the observed elasmobranch diversity patterns. Therefore, it might be possible that the diversification of elasmobranchs was opportunistic, benefitting from the appearance and subsequent radiation of new food resources, probably in response of enhanced surface productivity during the T-OAE. This hypothesis, however, needs to be tested, pending the inclusion of other time-equivalent marine vertebrate groups in future diversity analyses. Moreover, a detailed re-evaluation of Jurassic hybodontiforms will contribute to our understanding of chondrichthyan diversity dynamics across the T-OAE.


2015 ◽  
Vol 11 (4) ◽  
pp. 4039-4076 ◽  
Author(s):  
J. J. Gómez ◽  
M. J. Comas-Rengifo ◽  
A. Goy

Abstract. One of the main controversial items in palaeoclimatology is to elucidate if climate during the Jurassic was warmer than present day, with no ice caps, or if ice caps were present in some specific intervals. The Pliensbachian Cooling event (Lower Jurassic) has been pointed out as one of the main candidates to have developed ice caps on the poles. To constrain the timing of this cooling event, including the palaeoclimatic evolution before and after cooling, as well as the calculation of the seawater palaeotemperatures are of primary importance to find arguments on this subject. For this purpose, the Rodiles section of the Asturian Basin (Northern Spain), a well exposed succession of the uppermost Sinemurian, Pliensbachian and Lower Toarcian deposits, has been studied. A total of 562 beds were measured and sampled for ammonites, for biostratigraphical purposes and for belemnites, to determine the palaeoclimatic evolution through stable isotope studies. Comparison of the recorded uppermost Sinemurian, Pliensbachian and Lower Toarcian changes in seawater palaeotemperature with other European sections allows characterization of several climatic changes of probable global extent. A warming interval which partly coincides with a negative δ13Cbel excursion was recorded at the Upper Sinemurian. After a "normal" temperature interval, a new warming interval that contains a short lived positive δ13Cbel peak, was developed at the Lower-Upper Pliensbachian transition. The Upper Pliensbachian represents an outstanding cooling interval containing a positive δ13Cbel excursion interrupted by a small negative δ13Cbel peak. Finally, the Lower Toarcian represented an exceptional warming period pointed as the main responsible for the prominent Lower Toarcian mass extinction.


2019 ◽  
Author(s):  
Sebastian Stumpf ◽  
Faviel A. López-Romero ◽  
Jürgen Kriwet

The Early Jurassic represents a crucial time interval in the evolutionary history of elasmobranchs, because the Toarcian witnessed a first major diversification, suggesting a profound reorganization of ecological niches of chondrichthyans, probably accompanied by a subsequent diversity decline of hybodontiforms within marine environments. Potential factors underlying the Toarcian elasmobranch radiation event not only include evolutionary novelties in ecological adaptations of swimming, feeding, and reproduction, but also abiotic factors such as increasing seawater temperatures and variations in eustatic sea level associated with the Toarcian Oceanic Anoxic Event (T-OAE). These events might have played an important role in the Toarcian elasmobranch diversification event by regulating diversity dynamics through the availability of higher speciation and dispersal rates. In attempt to better understand macroevolutionary patterns and processes of Jurassic chondrichthyans, we analysed the generic diversity of Pliensbachian to Aalenian elasmobranchs and hybodontiforms and explored their response to the T-OAE. In doing so, we calculated the estimated mean standing diversities (EMSD) using 10 time bins of approximately 2 Myr duration and evaluated the relationships between EMSD and variations in both seawater temperature and eustatic sea level to test whether these parameters affect the observed diversity patterns. Our data indicate profoundly different diversity dynamics of elasmobranchs and hybodontiforms. The EMSD is low in Pliensbachian to Aalenian hybodontiforms, indicating an evolutionary stasis. Conversely, a constant taxonomic increase in elasmobranchs is recorded, spanning from the Pliensbachian to the end of the Toarcian, before reaching a diversity plateau in the Aalenian. These divergent patterns might suggest that hybodontiforms were not competing with elasmobranchs, but more likely are the result of still existing taxonomic misconceptions of Jurassic hybodontiforms, mainly caused by morphological characters that are either ambiguous or broadly distributed among these anatomically rather conservative chondrichthyans. Notwithstanding this, our results indicate that variations in seawater temperature and eustatic sea level changes associated with the T-OAE were not the primary drivers underlying the observed elasmobranch diversity patterns. Therefore, it might be possible that the diversification of elasmobranchs was opportunistic, benefitting from the appearance and subsequent radiation of new food resources, probably in response of enhanced surface productivity during the T-OAE. This hypothesis, however, needs to be tested, pending the inclusion of other time-equivalent marine vertebrate groups in future diversity analyses. Moreover, a detailed re-evaluation of Jurassic hybodontiforms will contribute to our understanding of chondrichthyan diversity dynamics across the T-OAE.


2020 ◽  
Vol 8 (11) ◽  
pp. 871
Author(s):  
Masayuki Banno ◽  
Satoshi Nakamura ◽  
Taichi Kosako ◽  
Yasuyuki Nakagawa ◽  
Shin-ichi Yanagishima ◽  
...  

Long-term beach observation data for several decades are essential to validate beach morphodynamic models that are used to predict coastal responses to sea-level rise and wave climate changes. At the Hasaki coast, Japan, the beach profile has been measured for 34 years at a daily to weekly time interval. This beach morphological dataset is one of the longest and most high-frequency measurements of the beach morphological change worldwide. The profile data, with more than 6800 records, reflect short- to long-term beach morphological change, showing coastal dune development, foreshore morphological change and longshore bar movement. We investigated the temporal beach variability from the decadal and monthly variations in elevation. Extremely high waves and tidal anomalies from an extratropical cyclone caused a significant change in the long-term bar behavior and foreshore slope. The berm and bar variability were also affected by seasonal wave and water level variations. The variabilities identified here from the long-term observations contribute to our understanding of various coastal phenomena.


2018 ◽  
Vol 14 (1) ◽  
pp. 73-84 ◽  
Author(s):  
Rony R. Kuechler ◽  
Lydie M. Dupont ◽  
Enno Schefuß

Abstract. The Pliocene is regarded as a potential analogue for future climate with conditions generally warmer-than-today and higher-than-preindustrial atmospheric CO2 levels. Here we present the first orbitally resolved records of continental hydrology and vegetation changes from West Africa for two Pliocene time intervals (5.0–4.6 Ma, 3.6–3.0 Ma), which we compare with records from the last glacial cycle (Kuechler et al., 2013). Our results indicate that changes in local insolation alone are insufficient to explain the full degree of hydrologic variations. Generally two modes of interacting insolation forcings are observed: during eccentricity maxima, when precession was strong, the West African monsoon was driven by summer insolation; during eccentricity minima, when precession-driven variations in local insolation were minimal, obliquity-driven changes in the summer latitudinal insolation gradient became dominant. This hybrid monsoonal forcing concept explains orbitally controlled tropical climate changes, incorporating the forcing mechanism of latitudinal gradients for the Pliocene, which probably increased in importance during subsequent Northern Hemisphere glaciations.


2021 ◽  
Author(s):  
Sebastian Ponath ◽  
Chetan Joshi ◽  
Amy T. Merrill ◽  
Volker Schmidts ◽  
Kim Greis ◽  
...  

A comprehensive analysis of the organocatalytic α‐chlorination of aldehydes with N‐chloroimides and differ‐ ent catalysts is presented. For this reaction, alternate mechanisms were proposed that differ in the role of resting state intermediates and the rationalization of the observed enantioselectivity. This manuscript aims at resolving these funda‐ mental questions on the basis of rigorous structural characterization of intermediates (configuration and conformation), NMR studies, ion mobility‐mass spectrometry, concentration profiles, isotope studies, and DFT calculations. <br>


2020 ◽  
Vol 35 (7) ◽  
pp. 334-340 ◽  
Author(s):  
F. Javier Dorado ◽  
Juli Pujade-Villar ◽  
E. Jordán Muñoz-Adalia ◽  
Juan Carlos Vinagrero ◽  
Julio J. Diez-Casero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document