scholarly journals Greenland during the last interglacial: the relative importance of insolation and oceanic changes

2016 ◽  
Vol 12 (9) ◽  
pp. 1907-1918 ◽  
Author(s):  
Rasmus A. Pedersen ◽  
Peter L. Langen ◽  
Bo M. Vinther

Abstract. Insolation changes during the Eemian (the last interglacial period, 129 000–116 000 years before present) resulted in warmer than present conditions in the Arctic region. The NEEM ice core record suggests warming of 8 ± 4 K in northwestern Greenland based on stable water isotopes. Here we use general circulation model experiments to investigate the causes of the Eemian warming in Greenland. Simulations of the atmospheric response to combinations of Eemian insolation and preindustrial oceanic conditions and vice versa are used to disentangle the impacts of the insolation change and the related changes in sea surface temperatures and sea ice conditions. The changed oceanic conditions cause warming throughout the year, prolonging the impact of the summertime insolation increase. Consequently, the oceanic conditions cause an annual mean warming of 2 K at the NEEM site, whereas the insolation alone causes an insignificant change. Taking the precipitation changes into account, however, the insolation and oceanic changes cause more comparable increases in the precipitation-weighted temperature, implying that both contributions are important for the ice core record at the NEEM site. The simulated Eemian precipitation-weighted warming of 2.4 K at the NEEM site is low compared to the ice core reconstruction, partially due to missing feedbacks related to ice sheet changes and an extensive sea ice cover. Surface mass balance calculations with an energy balance model further indicate that the combination of temperature and precipitation anomalies leads to potential mass loss in the north and southwestern parts of the ice sheet. The oceanic conditions favor increased accumulation in the southeast, while the insolation appears to be the dominant cause of the expected ice sheet reduction. Consequently, the Eemian is not a suitable analogue for future ice sheet changes.

2016 ◽  
Author(s):  
Rasmus A. Pedersen ◽  
Peter L. Langen ◽  
Bo M. Vinther

Abstract. Insolation changes during the Eemian (the last interglacial period, 129–116 000 years before present) resulted in warmer than present conditions in the Arctic region. The NEEM ice core record suggests warming of 8±4 K in northwestern Greenland based on water stable isotopes. Here we use general circulation model experiments to investigate the causes of the Eemian warming in Greenland. Simulations of the atmospheric response to combinations of Eemian insolation and pre-industrial oceanic conditions and vice versa, are used to disentangle the impacts of the insolation change and the related changes in sea surface temperatures and sea ice conditions. The changed oceanic conditions cause warming throughout the year, prolonging the impact of the summertime insolation increase. Consequently, the oceanic conditions cause annual mean warming of 2 K at the NEEM site, whereas the insolation alone causes an insignificant change. Taking the precipitation changes into account, however, the insolation and oceanic changes cause more comparable increases in the precipitation-weighted temperature, implying that both contributions are important for the ice core record at the NEEM site. The simulated Eemian precipitation-weighted warming of 2.4 K at the NEEM site is low compared to the ice core reconstruction, partially due to missing feedbacks related to ice sheet changes. Surface mass balance calculations with an energy balance model indicate potential mass loss in the north and southwestern parts of the ice sheet. The oceanic conditions favor increased accumulation in the southeast, while the insolation appears to be the dominant cause of the expected ice sheet reduction.


2020 ◽  
Author(s):  
Sentia Goursaud ◽  
Louise Sime ◽  
Eric Wolff

<p><span><span>The Last Interglacial period (</span></span><span><span>130-115 ka BP, </span></span><span><span>hereafter LIG</span></span><span><span>) </span></span><span><span>is often considered as a</span></span> <span><span>prime example to study the effect of </span></span><span><span>warmer-than-present </span></span><span><span>temperatures on polar ice sheets evolution. As the debate mainly focuses on the causes and tip</span></span><span><span>ping</span></span><span><span> point of a potential collapse of the West Antarctic Ice Sheet </span></span><span><span>(hereafter </span></span><span><span>WAIS</span></span><span><span>), </span></span><span><span>few investigations examine the consequences of a wais collapse in terms of atmospheric circulation. </span></span><span><span>However, a knowledge of </span></span><span><span>the state of the atmosphere is necessary to use proxy data recorded in ice cores. </span></span><span><span>By analysing a new ice core drilled in Skytrain ice rise and using climate modeling, t</span></span><span><span>he WACSWAIN (WArm Climate Stability of West Antarctic ice sheet in the last Interglacial) </span></span><span><span>aims to </span></span><span><span>reconstruct WAIS extent during the LIG. Here, we use simulations from the atmospheric general circulation model HadCM3 </span></span> <span><span>with </span></span><span><span>different </span></span><span><span>WAIS configurations. We show that changes in temperature are directly linked to changes in orography through thermodynamic effects, as well as a linear sea ice extent rise over the Pacific Ocean with the WAIS reduction explained by a reversal of meridional winds turning southwards as the WAIS disappears.</span></span> <span><span>At the Skytrain ice rise, we show that not only the isotopic thermometer can be applied, but we also suggest that the water stable isotope record imprinted in the ice core will allow us to quantify the wais reduction.</span></span></p>


Ocean Science ◽  
2011 ◽  
Vol 7 (2) ◽  
pp. 203-217 ◽  
Author(s):  
C. F. Postlethwaite ◽  
M. A. Morales Maqueda ◽  
V. le Fouest ◽  
G. R. Tattersall ◽  
J. Holt ◽  
...  

Abstract. Ocean tides are not explicitly included in many ocean general circulation models, which will therefore omit any interactions between tides and the cryosphere. We present model simulations of the wind and buoyancy driven circulation and tides of the Barents and Kara Seas, using a 25 km × 25 km 3-D ocean circulation model coupled to a dynamic and thermodynamic sea ice model. The modeled tidal amplitudes are compared with tide gauge data and sea ice extent is compared with satellite data. Including tides in the model is found to have little impact on overall sea ice extent but is found to delay freeze up and hasten the onset of melting in tidally active coastal regions. The impact that including tides in the model has on the salt budget is investigated and found to be regionally dependent. The vertically integrated salt budget is dominated by lateral advection. This increases significantly when tides are included in the model in the Pechora Sea and around Svalbard where tides are strong. Tides increase the salt flux from sea ice by 50% in the Pechora and White Seas but have little impact elsewhere. This study suggests that the interaction between ocean tides and sea ice should not be neglected when modeling the Arctic.


2011 ◽  
Vol 7 (3) ◽  
pp. 1041-1059 ◽  
Author(s):  
V. Masson-Delmotte ◽  
P. Braconnot ◽  
G. Hoffmann ◽  
J. Jouzel ◽  
M. Kageyama ◽  
...  

Abstract. The sensitivity of interglacial Greenland temperature to orbital and CO2 forcing is investigated using the NorthGRIP ice core data and coupled ocean-atmosphere IPSL-CM4 model simulations. These simulations were conducted in response to different interglacial orbital configurations, and to increased CO2 concentrations. These different forcings cause very distinct simulated seasonal and latitudinal temperature and water cycle changes, limiting the analogies between the last interglacial and future climate. However, the IPSL-CM4 model shows similar magnitudes of Arctic summer warming and climate feedbacks in response to 2 × CO2 and orbital forcing of the last interglacial period (126 000 years ago). The IPSL-CM4 model produces a remarkably linear relationship between TOA incoming summer solar radiation and simulated changes in summer and annual mean central Greenland temperature. This contrasts with the stable isotope record from the Greenland ice cores, showing a multi-millennial lagged response to summer insolation. During the early part of interglacials, the observed lags may be explained by ice sheet-ocean feedbacks linked with changes in ice sheet elevation and the impact of meltwater on ocean circulation, as investigated with sensitivity studies. A quantitative comparison between ice core data and climate simulations requires stability of the stable isotope – temperature relationship to be explored. Atmospheric simulations including water stable isotopes have been conducted with the LMDZiso model under different boundary conditions. This set of simulations allows calculation of a temporal Greenland isotope-temperature slope (0.3–0.4‰ per °C) during warmer-than-present Arctic climates, in response to increased CO2, increased ocean temperature and orbital forcing. This temporal slope appears half as large as the modern spatial gradient and is consistent with other ice core estimates. It may, however, be model-dependent, as indicated by preliminary comparison with other models. This suggests that further simulations and detailed inter-model comparisons are also likely to be of benefit. Comparisons with Greenland ice core stable isotope data reveals that IPSL-CM4/LMDZiso simulations strongly underestimate the amplitude of the ice core signal during the last interglacial, which could reach +8–10 °C at fixed-elevation. While the model-data mismatch may result from missing positive feedbacks (e.g. vegetation), it could also be explained by a reduced elevation of the central Greenland ice sheet surface by 300–400 m.


2010 ◽  
Vol 7 (5) ◽  
pp. 1669-1701
Author(s):  
C. F. Postlethwaite ◽  
M. A. Morales Maqueda ◽  
V. Le Fouest ◽  
G. R. Tattersall ◽  
J. Holt ◽  
...  

Abstract. Ocean tides are not explicitly included in many ocean general circulation models, which will therefore omit any interactions between tides and the cryosphere. We present model simulations of the wind and buoyancy driven circulation and tides of the Barents and Kara Seas, using a 25 km × 25 km 3-D ocean circulation model coupled to a dynamic and thermodynamic sea ice model. The modeled tidal amplitudes are compared with tide gauge data and sea ice extent is compared with satellite data. Including tides in the model is found to have little impact on overall sea ice extent but is found to delay freeze up and hasten the onset of melting in tidally active coastal regions. The impact that including tides in the model has on the salt budget is investigated and found to be regionally dependent. The vertically integrated salt budget is dominated by lateral advection. This increases significantly when tides are included in the model in the Pechora Sea and around Svalbard where tides are strong. Tides increase the salt flux from sea ice by 50% in the Pechora and White Seas but have little impact elsewhere. This study suggests that the interaction between ocean tides and sea ice should not be neglected when modeling the Arctic.


2015 ◽  
Vol 11 (2) ◽  
pp. 933-995 ◽  
Author(s):  
M. Pfeiffer ◽  
G. Lohmann

Abstract. During the Last Interglacial (LIG, 130–115 kiloyear before present), the northern high latitudes experienced higher temperatures than those of the late Holocene with a notably lower Greenland Ice Sheet (GIS). However, the impact of a reduced GIS on the global climate has not yet been well constrained. In this study, we quantify the contribution of the GIS to LIG warmth by performing various sensitivity studies, employing the Community Earth System Models (COSMOS), with a focus on height and extent of the GIS. In order to asses the effects of insolation changes over time and for a comparison of LIG climate with the current interglacial, we perform transient simulations covering the whole LIG and Holocene. We analyze surface air temperature (SAT) and separate the contribution of different forcings to LIG warmth. The strong Northern Hemisphere warming is mainly caused by increased summer insolation. Reducing the height and extent of the GIS leads to a warming of several degrees Celcius in the northern and southern high latitudes during local winter. In order to evaluate the performance of our LIG simulations, we additionally compare the simulated SAT anomalies with marine and terrestrial proxy-based LIG temperature anomalies. Our model results are in good agreement with proxy records with respect to the pattern, but underestimate the reconstructed temperatures. We are able to reduce the mismatch between model and data by taking into account the potential seasonal bias of the proxy record and the uncertainties in the dating of the proxy records for the LIG thermal maximum. The seasonal bias and the uncertainty of the timing are estimated from our own transient model simulations. We note however that our LIG simulations are not able to reproduce the full magnitude of temperature changes indicated by the proxies, suggesting a potential misinterpretation of the proxy records or deficits of our model.


2011 ◽  
Vol 7 (3) ◽  
pp. 1585-1630 ◽  
Author(s):  
V. Masson-Delmotte ◽  
P. Braconnot ◽  
G. Hoffmann ◽  
J. Jouzel ◽  
M. Kageyama ◽  
...  

Abstract. The sensitivity of interglacial Greenland temperature to orbital and CO2 forcing is investigated using the NorthGRIP ice core data and coupled ocean-atmosphere IPSL-CM4 model simulations. These simulations were conducted in response to different interglacial orbital configurations, and to increased CO2 concentrations. These different forcings cause very distinct simulated seasonal and latitudinal temperature and water cycle changes, limiting the analogies between the last interglacial and future climate. However, the IPSL-CM4 model shows similar magnitudes of Arctic summer warming and climate feedbacks in response to 2 × CO2 and orbital forcing of the last interglacial period (126 000 yr ago). The IPSL model produces a remarkably linear relationship between top of atmosphere incoming summer solar radiation and simulated changes in summer and annual mean central Greenland temperature. This contrasts with the stable isotope record from the Greenland ice cores, showing a multi-millennial lagged response to summer insolation. During the early part of interglacials, the observed lags may be explained by ice sheet-ocean feedbacks linked with changes in ice sheet elevation and the impact of meltwater on ocean circulation, as investigated with sensitivity studies. A quantitative comparison between ice core data and climate simulations requires to explore the stability of the stable isotope – temperature relationship. Atmospheric simulations including water stable isotopes have been conducted with the LMDZiso model under different boundary conditions. This set of simulations allows to calculate a temporal Greenland isotope-temperature slope (0.3–0.4 ‰ per °C) during warmer than present Arctic climates, in response to increased CO2, increased ocean temperature and orbital forcing. This temporal slope appears twice as small as the modern spatial gradient and is consistent with other ice core estimates. A preliminary comparison with other model results implies that other mechanisms could also play a role. This suggests that further simulations and detailed inter-model comparisons are also likely to be of benefit. Comparisons with Greenland ice core stable isotope data reveals that IPSL/LMDZiso simulations strongly underestimate the amplitude of the ice core signal during the last interglacial, which could reach +8–10 °C at fixed-elevation. While the model-data mismatch may result from missing positive feedbacks (e.g. vegetation), it could also be explained by a reduced elevation of the central Greenland ice sheet surface by 300–400 m.


1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


2019 ◽  
Vol 116 (10) ◽  
pp. 4099-4104 ◽  
Author(s):  
Louise C. Sime ◽  
Peter O. Hopcroft ◽  
Rachael H. Rhodes

Greenland ice cores provide excellent evidence of past abrupt climate changes. However, there is no universally accepted theory of how and why these Dansgaard–Oeschger (DO) events occur. Several mechanisms have been proposed to explain DO events, including sea ice, ice shelf buildup, ice sheets, atmospheric circulation, and meltwater changes. DO event temperature reconstructions depend on the stable water isotope (δ18O) and nitrogen isotope measurements from Greenland ice cores: interpretation of these measurements holds the key to understanding the nature of DO events. Here, we demonstrate the primary importance of sea ice as a control on Greenland ice coreδ18O: 95% of the variability inδ18O in southern Greenland is explained by DO event sea ice changes. Our suite of DO events, simulated using a general circulation model, accurately captures the amplitude ofδ18O enrichment during the abrupt DO event onsets. Simulated geographical variability is broadly consistent with available ice core evidence. We find an hitherto unknown sensitivity of theδ18O paleothermometer to the magnitude of DO event temperature increase: the change inδ18O per Kelvin temperature increase reduces with DO event amplitude. We show that this effect is controlled by precipitation seasonality.


2017 ◽  
Vol 11 (1) ◽  
pp. 343-362 ◽  
Author(s):  
Sentia Goursaud ◽  
Valérie Masson-Delmotte ◽  
Vincent Favier ◽  
Susanne Preunkert ◽  
Michel Fily ◽  
...  

Abstract. A 22.4 m-long shallow firn core was extracted during the 2006/2007 field season from coastal Adélie Land. Annual layer counting based on subannual analyses of δ18O and major chemical components was combined with 5 reference years associated with nuclear tests and non-retreat of summer sea ice to build the initial ice-core chronology (1946–2006), stressing uncertain counting for 8 years. We focus here on the resulting δ18O and accumulation records. With an average value of 21.8 ± 6.9 cm w.e. yr−1, local accumulation shows multi-decadal variations peaking in the 1980s, but no long-term trend. Similar results are obtained for δ18O, also characterised by a remarkably low and variable amplitude of the seasonal cycle. The ice-core records are compared with regional records of temperature, stake area accumulation measurements and variations in sea-ice extent, and outputs from two models nudged to ERA (European Reanalysis) atmospheric reanalyses: the high-resolution atmospheric general circulation model (AGCM), including stable water isotopes ECHAM5-wiso (European Centre Hamburg model), and the regional atmospheric model Modèle Atmosphérique Régional (AR). A significant linear correlation is identified between decadal variations in δ18O and regional temperature. No significant relationship appears with regional sea-ice extent. A weak and significant correlation appears with Dumont d'Urville wind speed, increasing after 1979. The model-data comparison highlights the inadequacy of ECHAM5-wiso simulations prior to 1979, possibly due to the lack of data assimilation to constrain atmospheric reanalyses. Systematic biases are identified in the ECHAM5-wiso simulation, such as an overestimation of the mean accumulation rate and its interannual variability, a strong cold bias and an underestimation of the mean δ18O value and its interannual variability. As a result, relationships between simulated δ18O and temperature are weaker than observed. Such systematic precipitation and temperature biases are not displayed by MAR, suggesting that the model resolution plays a key role along the Antarctic ice sheet coastal topography. Interannual variations in ECHAM5-wiso temperature and precipitation accurately capture signals from meteorological data and stake observations and are used to refine the initial ice-core chronology within 2 years. After this adjustment, remarkable positive (negative) δ18O anomalies are identified in the ice-core record and the ECHAM5-wiso simulation in 1986 and 2002 (1998–1999), respectively. Despite uncertainties associated with post-deposition processes and signal-to-noise issues, in one single coastal ice-core record, we conclude that the S1C1 core can correctly capture major annual anomalies in δ18O as well as multi-decadal variations. These findings highlight the importance of improving the network of coastal high-resolution ice-core records, and stress the skills and limitations of atmospheric models for accumulation and δ18O in coastal Antarctic areas. This is particularly important for the overall East Antarctic ice sheet mass balance.


Sign in / Sign up

Export Citation Format

Share Document