salt budget
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 1)

2020 ◽  
Vol 14 (10) ◽  
pp. 3329-3347 ◽  
Author(s):  
Lisa Thompson ◽  
Madison Smith ◽  
Jim Thomson ◽  
Sharon Stammerjohn ◽  
Steve Ackley ◽  
...  

Abstract. Katabatic winds in coastal polynyas expose the ocean to extreme heat loss, causing intense sea ice production and dense water formation around Antarctica throughout autumn and winter. The advancing sea ice pack, combined with high winds and low temperatures, has limited surface ocean observations of polynyas in winter, thereby impeding new insights into the evolution of these ice factories through the dark austral months. Here, we describe oceanic observations during multiple katabatic wind events during May 2017 in the Terra Nova Bay and Ross Sea polynyas. Wind speeds regularly exceeded 20 m s−1, air temperatures were below −25 ∘C, and the oceanic mixed layer extended to 600 m. During these events, conductivity–temperature–depth (CTD) profiles revealed bulges of warm, salty water directly beneath the ocean surface and extending downwards tens of meters. These profiles reflect latent heat and salt release during unconsolidated frazil ice production, driven by atmospheric heat loss, a process that has rarely if ever been observed outside the laboratory. A simple salt budget suggests these anomalies reflect in situ frazil ice concentration that ranges from 13 to 266×10-3 kg m−3. Contemporaneous estimates of vertical mixing reveal rapid convection in these unstable density profiles and mixing lifetimes from 7 to 12 min. The individual estimates of ice production from the salt budget reveal the intensity of short-term ice production, up to 110 cm d−1 during the windiest events, and a seasonal average of 29 cm d−1. We further found that frazil ice production rates covary with wind speed and with location along the upstream–downstream length of the polynya. These measurements reveal that it is possible to indirectly observe and estimate the process of unconsolidated ice production in polynyas by measuring upper-ocean water column profiles. These vigorous ice production rates suggest frazil ice may be an important component in total polynya ice production.





2019 ◽  
Vol 49 (9) ◽  
pp. 2309-2321 ◽  
Author(s):  
Ursula Schauer ◽  
Martin Losch

AbstractOcean water is freshwater with salt. The distribution of salt concentration in the ocean changes by addition and removal of freshwater in the form of precipitation, continental runoff, and evaporation, and by a flow of saline ocean water that gives rise to a salt flux divergence. Often, changes in salinity are described in terms of “freshwater content” changes and oceanic “freshwater transports,” defined as fractions of freshwater. But these freshwater fractions are arbitrary, because they are defined by a nonunique reference salinity. Also all temporal and spatial comparisons and anomalies of such freshwater fractions in the ocean depend on the choice of reference salinity in a nonlinear way, because in the definition of the fraction it appears in the denominator. Consequently, any conclusion based on the comparison of freshwater fractions is ambiguous. Since there is no definite physical constraint for a unique reference salinity, freshwater fractions are declared not useful for the assessment of the state of ocean regions and the associated changes. In the light of ongoing changes in the water cycle and the global nature of climate science, scientific results need to be expressed in a way so that they can be easily compared and integrated in a global perspective. To this end, we recommend to avoid freshwater fraction as a parameter describing the ocean state. Instead, one should use the terms of the salt budget to obtain unique results for quantifying and comparing salinity.



2019 ◽  
Vol 69 (2) ◽  
pp. 156-162
Author(s):  
P. A. Maheswaran ◽  
V. K. Unny ◽  
S. Sateesh Kumar ◽  
C. P. Uthaman ◽  
T. Pradeep Kumar

A butterfly type of repeat track cruise was carried out in the South Eastern Arabian Sea (off Minicoy) onboard INS Sagardhwani during July 2016 to Aug 2016. We have also made use of the data from OMNI buoy, AD09, which is about 6 km close to the centre station of butterfly track. Air sea flux, the horizontal current data from AD09 and the time series data collected from the butterfly experiment were analyzed to compute the mixed layer heat and salt budget. The short-term thermo-haline variability off Minicoy, relative contribution of heat/salt budget terms in MLD and its effects on acoustic propagation are addressed in this paper. In this study, we found that most dominating term in the mixed layer heat budget estimation is net surface heat flux followed by the advective terms. However the salinity in the mixed layer is dominated by the contribution of buoyancy mixing due to night time evaporative cooling. During the calm, sunny day, the so-called afternoon effect due to the diurnal heating restricts the sonar range. But during the windy day, the wind/wave mixing prevents the warming of the surface layer which in turn enhances the sonar range. Similarly, the night time cooling also enhance the acoustic propagation range. The presence of Arabian Sea High Salinity Watermass in the surface layer also enhances the acoustic propagation.



2013 ◽  
Vol 43 (9) ◽  
pp. 1880-1898 ◽  
Author(s):  
Nicolas Kolodziejczyk ◽  
Fabienne Gaillard

Abstract The mixed layer heat and salt budget in the southeastern subtropical Pacific are estimated using 7 years (2004–10) of Argo-profiling float data, surface fluxes, precipitation, surface velocity data, and wind observations and reanalysis. In this region, the mixed layer heat budget is characterized by a strong annual cycle mainly modulated by the shortwave radiation annual cycle. During the austral fall and winter, the shortwave radiation input minimum is overwhelmed by the heat loss mainly because of the latent heat flux. The mixed layer salt budget also presents a strong annual cycle with a minimum of salt content during the late austral winter. In contrast with the heat budget, the salt budget is mainly driven by the unresolved terms computed as the residual of the budget. Among these missing terms, the most likely candidate is the vertical turbulent mixing as a result of convection caused by the heat surface buoyancy loss and the destabilizing vertical gradient of salinity at the base of the mixed layer. This downward flux of salt at the base of the mixed layer could explain the annual spiciness injection and interannual spiciness variability in the permanent thermocline in the southeastern Pacific.



Ocean Science ◽  
2011 ◽  
Vol 7 (2) ◽  
pp. 203-217 ◽  
Author(s):  
C. F. Postlethwaite ◽  
M. A. Morales Maqueda ◽  
V. le Fouest ◽  
G. R. Tattersall ◽  
J. Holt ◽  
...  

Abstract. Ocean tides are not explicitly included in many ocean general circulation models, which will therefore omit any interactions between tides and the cryosphere. We present model simulations of the wind and buoyancy driven circulation and tides of the Barents and Kara Seas, using a 25 km × 25 km 3-D ocean circulation model coupled to a dynamic and thermodynamic sea ice model. The modeled tidal amplitudes are compared with tide gauge data and sea ice extent is compared with satellite data. Including tides in the model is found to have little impact on overall sea ice extent but is found to delay freeze up and hasten the onset of melting in tidally active coastal regions. The impact that including tides in the model has on the salt budget is investigated and found to be regionally dependent. The vertically integrated salt budget is dominated by lateral advection. This increases significantly when tides are included in the model in the Pechora Sea and around Svalbard where tides are strong. Tides increase the salt flux from sea ice by 50% in the Pechora and White Seas but have little impact elsewhere. This study suggests that the interaction between ocean tides and sea ice should not be neglected when modeling the Arctic.



2010 ◽  
Vol 7 (5) ◽  
pp. 1669-1701
Author(s):  
C. F. Postlethwaite ◽  
M. A. Morales Maqueda ◽  
V. Le Fouest ◽  
G. R. Tattersall ◽  
J. Holt ◽  
...  

Abstract. Ocean tides are not explicitly included in many ocean general circulation models, which will therefore omit any interactions between tides and the cryosphere. We present model simulations of the wind and buoyancy driven circulation and tides of the Barents and Kara Seas, using a 25 km × 25 km 3-D ocean circulation model coupled to a dynamic and thermodynamic sea ice model. The modeled tidal amplitudes are compared with tide gauge data and sea ice extent is compared with satellite data. Including tides in the model is found to have little impact on overall sea ice extent but is found to delay freeze up and hasten the onset of melting in tidally active coastal regions. The impact that including tides in the model has on the salt budget is investigated and found to be regionally dependent. The vertically integrated salt budget is dominated by lateral advection. This increases significantly when tides are included in the model in the Pechora Sea and around Svalbard where tides are strong. Tides increase the salt flux from sea ice by 50% in the Pechora and White Seas but have little impact elsewhere. This study suggests that the interaction between ocean tides and sea ice should not be neglected when modeling the Arctic.







Sign in / Sign up

Export Citation Format

Share Document