scholarly journals Hydroclimatic variability in the Levant during the early last glacial (∼  117–75 ka) derived from micro-facies analyses of deep Dead Sea sediments

2016 ◽  
Vol 12 (1) ◽  
pp. 75-90 ◽  
Author(s):  
I. Neugebauer ◽  
M. J. Schwab ◽  
N. D. Waldmann ◽  
R. Tjallingii ◽  
U. Frank ◽  
...  

Abstract. The new sediment record from the deep Dead Sea basin (ICDP core 5017-1) provides a unique archive for hydroclimatic variability in the Levant. Here, we present high-resolution sediment facies analysis and elemental composition by micro-X-ray fluorescence (µXRF) scanning of core 5017-1 to trace lake levels and responses of the regional hydroclimatology during the time interval from ca. 117 to 75 ka, i.e. the transition between the last interglacial and the onset of the last glaciation. We distinguished six major micro-facies types and interpreted these and their alterations in the core in terms of relative lake level changes. The two end-member facies for highest and lowest lake levels are (a) up to several metres thick, greenish sediments of alternating aragonite and detrital marl laminae (aad) and (b) thick halite facies, respectively. Intermediate lake levels are characterised by detrital marls with varying amounts of aragonite, gypsum or halite, reflecting lower-amplitude, shorter-term variability. Two intervals of pronounced lake level drops occurred at  ∼  110–108 ± 5 and  ∼  93–87 ± 7 ka. They likely coincide with stadial conditions in the central Mediterranean (Melisey I and II pollen zones in Monticchio) and low global sea levels during Marine Isotope Stage (MIS) 5d and 5b. However, our data do not support the current hypothesis of an almost complete desiccation of the Dead Sea during the earlier of these lake level low stands based on a recovered gravel layer. Based on new petrographic analyses, we propose that, although it was a low stand, this well-sorted gravel layer may be a vestige of a thick turbidite that has been washed out during drilling rather than an in situ beach deposit. Two intervals of higher lake stands at  ∼  108–93 ± 6 and  ∼  87–75 ± 7 ka correspond to interstadial conditions in the central Mediterranean, i.e. pollen zones St. Germain I and II in Monticchio, and Greenland interstadials (GI) 24+23 and 21 in Greenland, as well as to sapropels S4 and S3 in the Mediterranean Sea. These apparent correlations suggest a close link of the climate in the Levant to North Atlantic and Mediterranean climates during the time of the build-up of Northern Hemisphere ice shields in the early last glacial period.

2015 ◽  
Vol 11 (4) ◽  
pp. 3625-3663 ◽  
Author(s):  
I. Neugebauer ◽  
M. J. Schwab ◽  
N. D. Waldmann ◽  
R. Tjallingii ◽  
U. Frank ◽  
...  

Abstract. The new sediment record from the deep Dead Sea basin (ICDP core 5017-1) provides a unique archive for hydroclimatic variability in the Levant. Here, we present high-resolution sediment facies analysis and elemental composition by μXRF scanning of core 5017-1 to trace lake levels and responses of the regional hydroclimatology during the time interval from ca 117–75 ka, i.e. the transition between the last interglacial and the onset of the last glaciation. We distinguished six major micro-facies types and interpreted these and their alterations in the core in terms of relative lake level changes. The two end-member facies for highest and lowest lake levels are (a) up to several meters thick, greenish sediments of alternating aragonite and detrital marl laminae (aad) and (b) thick halite facies, respectively. Intermediate lake levels are characterised by detrital marls with varying amounts of aragonite, gypsum or halite, reflecting lower-amplitude, shorter-term variability. Two intervals of pronounced lake level drops occurred at ∼110–108 ± 5 and ∼93–87 ± 7 ka. They likely coincide with stadial conditions in the central Mediterranean (Melisey I and II pollen zones in Monticchio) and low global sea levels during MIS 5d and 5b. However, our data do not support the current hypothesis of an almost complete desiccation of the Dead Sea during the earlier of these lake level low stands based on a recovered gravel layer. Based on new petrographic analyses, we propose that, although it was a low stand, this well-sorted gravel layer may be a vestige of a thick turbidite that has been washed out during drilling rather than an in-situ beach deposit. Two intervals of higher lake stands at ∼108–93 ± 6 and ∼87–75 ± 7 ka correspond to interstadial conditions in the central Mediterranean, i.e. pollen zones St. Germain I and II in Monticchio, and GI 24 + 23 and 21 in Greenland, as well as to sapropels S4 and S3 in the Mediterranean Sea. These apparent correlations suggest a close link of the climate in the Levant to North Atlantic and Mediterranean climates during the time of the build-up of Northern Hemisphere ice shields in the early last glacial period.


2009 ◽  
Vol 72 (1) ◽  
pp. 1-15 ◽  
Author(s):  
N. Waldmann ◽  
M. Stein ◽  
D. Ariztegui ◽  
A. Starinsky

AbstractIn this paper we describe the stratigraphy and sediments deposited in Lake Samra that occupied the Dead Sea basin between ∼ 135 and 75 ka. This information is combined with U/Th dating of primary aragonites in order to estimate a relative lake-level curve that serves as a regional paleohydrological monitor. The lake stood at an elevation of ∼ 340 m below mean sea level (MSL) during most of the last interglacial. This level is relatively higher than the average Holocene Dead Sea (∼ 400 ± 30 m below MSL). At ∼ 120 and ∼ 85 ka, Lake Samra rose to ∼ 320 m below MSL while it dropped to levels lower than ∼ 380 m below MSL at ∼ 135 and ∼ 75 ka, reflecting arid conditions in the drainage area. Lowstands are correlated with warm intervals in the Northern Hemisphere, while minor lake rises are probably related to cold episodes during MIS 5b and MIS 5d. Similar climate relationships are documented for the last glacial highstand Lake Lisan and the lowstand Holocene Dead Sea. Yet, the dominance of detrital calcites and precipitation of travertines in the Dead Sea basin during the last interglacial interval suggest intense pluvial conditions and possible contribution of southern sources of wetness to the region.


2020 ◽  
pp. 1-22
Author(s):  
Michael Klinge ◽  
Frank Schlütz ◽  
Anja Zander ◽  
Daniela Hülle ◽  
Ochirbat Batkhishig ◽  
...  

Abstract Glacial and lacustrine sediments from the Mongolian Altai provide paleoclimatic information for the late Pleistocene in Mongolia, for which only a few sufficiently studied archives exist. Glacial stages referred to global cooling events are reported for the last glacial maximum (27–21 ka) and the late glacial period (18–16 ka). Sedimentary archives from the first part of the last glacial period are infrequent. We present proxy data for this period from two different archives (88–63 and 57–30 ka). Due to the limitation of effective moisture, an increase of precipitation is discussed as one trigger for glacier development in the cold-arid regions of central Asia. Our pollen analysis from periods of high paleolake levels in small catchments indicate that the vegetation was sparse and of dry desert type between 42–29 and 17–11 ka. This apparent contradiction between high lake levels and dry landscape conditions, the latter supported by intensified eolian processes, points to lower temperatures and cooler conditions causing reduced evaporation to be the main trigger for the high lake levels during glacier advances. Rising temperatures that cause melting of glacier and permafrost ice and geomorphological processes play a role in paleolake conditions. Interpreting lake-level changes as regional or global paleoclimate signals requires detailed investigation of geomorphological settings and mountain–basin relationships.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1801 ◽  
Author(s):  
Peter Waylen ◽  
Christopher Annear ◽  
Erin Bunting

Annual precipitation inputs to the Lake Mweru basin, Zambia, were computed from historic data and recent gridded data sets to determine historic (1925–2013) changes in lake level and their potential impacts on the important fisheries of the lake. The results highlight a period from the early 1940s to the mid-1960s when interannual variability of inputs doubled. Existing lake level data did not capture this period but they did indicate that levels were positively correlated with precipitation one to three years previously, reflecting the hydrologic storage of the lake, the inflowing Luapula River and the upstream Bangweulu wetland complex. Lag cross-correlations of rainfall to El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole were weak and spatially and temporally discontinuous. The two drivers were generally positively correlated and induced opposing effects upon annual precipitation and lagged lake levels. This correlation became non-significant during the time of high observed interannual variability and basin inputs were prone to the vagaries of either driver independently or reinforcing drought/excess conditions. During times of high flows and persistent elevated lake levels, breeding habitat for fish increased markedly, as did nutrition supplied from the upstream wetlands. High hydrologic storage ensures that lake levels change slowly, despite contemporary precipitation totals. Therefore, good conditions for the growth of fish populations persisted for several years and populations boomed. Statistical models of biological populations indicated that such temporally autocorrelated conditions, combined with abundant habitat and nutrition can lead the “boom and bust” of fish populations witnessed historically in Lake Mweru.


2021 ◽  
Author(s):  
Yoav Ben Dor ◽  
Francesco Marra ◽  
Moshe Armon ◽  
Yehouda Enzel ◽  
Efrat Morin

Abstract. Annual and decadal-scale hydroclimatic variability is a key characteristic embedded into climate insitu. It is therefore crucial to study hydroclimatic variability in order to understand its effects on climate derivatives such as hydrological processes and water availability. However, the study of this variability from modern records is limited due to their relatively short span, whereas model simulations relaying on modern dynamics could miss some of its aspects. Here we study annual to decadal hydroclimatic variability in the Levant using two sedimentary sections covering ~ 700 years deposited at ~ 18 and ~ 27 Ka retrieved from the depocenter of the Dead Sea, which has been continuously recording environmental conditions throughout the late Pleistocene. We focus on two ~ 700 years long series of annually-deposited laminated intervals (i.e., varves) representing two episodes of opposing mean climates, deposited during lake level rise and fall at 27 and 18 Ka, respectively. These two series comprise alternations of authigenic aragonite precipitated during summer and flood-derived detrital laminae deposited during winter. Within this record, aragonite laminae serve as a proxy of annual inflow and epilimnion dilution, whereas detrital laminae comprise sub-laminae that record individual floods. The two series depict distinct characteristics with increased mean and variance of annual inflow and flood frequency during "wetter", with respect to the "dryer", conditions. In addition, decades of intense flood frequency are identified (e.g., clusters), suggesting shifts between centennial-scale climatic regimes, which are particularly pronounced during wetter, lake-rising conditions. The combined application of multiple time series analyses indicates that episodes of falling lake levels are characterized by multiple pronounced quasi-periodic components with periodicities of 2–4, 6–8 and ~ 12 years, whereas the rising lake level episode presents weaker, less-persistent periodical components with similar periodicities. Combining these observations with the modern synoptic-scale hydroclimatology indicates shifts in the dominance of key synoptic systems governing rainfall, annual inflow and flood frequency in the eastern Mediterranean over centennial time-scale.


2002 ◽  
Vol 57 (3) ◽  
pp. 334-342 ◽  
Author(s):  
Amos Frumkin ◽  
Yoel Elitzur

AbstractThe Dead Sea, the Holocene terminal lake of the Jordan River catchment, has fluctuated during its history in response to climatic change. Biblical records, calibrated by radiocarbon-dated geological and archaeological evidence, reinforce and add detail to the chronology of the lake-level fluctuations. There are three historically documented phases of the Dead Sea in the Biblical record: low lake levels ca. 2000–1500 B.C.E. (before common era); high lake levels ca. 1500–1200 B.C.E.; and low lake levels between ca. 1000 and 700 B.C.E. The Biblical evidence indicates that during the dry periods the southern basin of the Dead Sea was completely dry, a fact that was not clear from the geological and archaeological data alone.


2021 ◽  
Vol 17 (6) ◽  
pp. 2653-2677
Author(s):  
Yoav Ben Dor ◽  
Francesco Marra ◽  
Moshe Armon ◽  
Yehouda Enzel ◽  
Achim Brauer ◽  
...  

Abstract. Annual and decadal-scale hydroclimatic variability describes key characteristics that are embedded into climate in situ and is of prime importance in subtropical regions. The study of hydroclimatic variability is therefore crucial to understand its manifestation and implications for climate derivatives such as hydrological phenomena and water availability. However, the study of this variability from modern records is limited due to their relatively short span, whereas model simulations relying on modern dynamics could misrepresent some of its aspects. Here we study annual to decadal hydroclimatic variability in the Levant using two sedimentary sections covering ∼ 700 years each, from the depocenter of the Dead Sea, which has been continuously recording environmental conditions since the Pleistocene. We focus on two series of annually deposited laminated intervals (i.e., varves) that represent two episodes of opposing mean climates, deposited during MIS2 lake-level rise and fall at ∼ 27 and 18 ka, respectively. These two series comprise alternations of authigenic aragonite that precipitated during summer and flood-borne detrital laminae deposited by winter floods. Within this record, aragonite laminae form a proxy of annual inflow and the extent of epilimnion dilution, whereas detrital laminae are comprised of sub-laminae deposited by individual flooding events. The two series depict distinct characteristics with increased mean and variance of annual inflow and flood frequency during “wetter”, with respect to the relatively “dryer”, conditions, reflected by opposite lake-level changes. In addition, decades of intense flood frequency (clusters) are identified, reflecting the in situ impact of shifting centennial-scale climate regimes, which are particularly pronounced during wetter conditions. The combined application of multiple time series analyses suggests that the studied episodes are characterized by weak and non-significant cyclical components of sub-decadal frequencies. The interpretation of these observations using modern synoptic-scale hydroclimatology suggests that Pleistocene climate changes resulted in shifts in the dominance of the key synoptic systems that govern rainfall, annual inflow and flood frequency in the eastern Mediterranean Sea over centennial timescales.


2020 ◽  
Author(s):  
Hana Jurikova ◽  
Ina Neugebauer ◽  
Birgit Plessen ◽  
Michael Henehan ◽  
Rik Tjallingii ◽  
...  

<p>Sedimentary sequences of the Dead Sea provide a unique high-resolution archive of past climatic changes in the Mediterranean-Levant, a key region for human migration out of Africa at the boundary of hemispheric climate belts. The well-preserved record of the Holocene Dead Sea and its Last Glacial precursor Lake Lisan is characterised by annual laminations – varves – composed of alternate layers of aragonite and detritus. Past lake level reconstructions suggest large fluctuations in the regional hydrological balance driven by abrupt climatic events, including a pronounced transition from lake level high-stand during the Last Glacial Maximum (LGM) to a low-stand at the onset of the Holocene [1]. On millennial timescales these changes have been associated with temperature variations recorded in the Greenland ice core, underscoring the potential of the Dead Sea to offer both regional and global perspectives on high-amplitude climatic events in the past. However, our ability to fully read the Dead Sea record critically depends on reliable extraction of palaeo-climatic and palaeo-environmental data from lacustrine carbonates, and an improved understanding of their formation. Here we present carbon, oxygen, boron isotope and trace element composition of hand-picked authigenic aragonite from a Dead Sea deep-drilling core (ICDP 5017-1; [2]) and shore outcrops. While traditionally used as a pH-proxy [3], we examine the possibility of applying boron geochemistry for reconstructing the source water and brine composition [4]. Using our innovative combined approach, we elucidate the palaeo-hydroclimatic evolution of the Dead Sea during intervals of major environmental changes since the end of the LGM. <br><br>[1] Torfstein A., <em>et al.</em> (2013) <em>Quat. Sci. Rev.</em> <strong>69</strong>, 1–7. <br>[2] Neugebauer I., <em>et al.</em> (2014) <em>Quat. Sci. Rev.</em> <strong>102</strong>, 149–165. <br>[3] Jurikova H., <em>et al.</em> (2019) <em>Geochim. Cosmochim. Acta</em> <strong>248</strong>, 370–386. <br>[4] Vengosh A., <em>et al.</em> (1991) <em>Geochim. Cosmochim. Acta</em> <strong>55</strong>, 1689–1695.</p>


2020 ◽  
Author(s):  
Hannah Hartung ◽  
Jane M. Reed ◽  
Thomas Litt

<p>The Eastern Mediterranean, and the southern Levant in particular, is a key region for palaeoclimatological and palaeoenvironmental research due to its highly complex topography and climatic variability. Our understanding of environmental variability and its possible drivers, and the interaction with migration processes of modern <em>Homo sapiens</em> from a source area in Africa to Europe, is still limited. This is partly because continuous sediment records of sufficient age are rare across the Mediterranean Basin. The deposits of the Dead Sea represent an ideal archive to investigate palaeoenvironmental conditions during human migration phases in the Last Glacial period (MIS 4-2). </p><p>Diatoms (single-celled siliceous algae, Bacillariophyceae) have well-recognised potential to generate high-quality palaeolimnological data, especially in closed-basin saline lakes, but they remain one of the least-exploited proxies in Eastern Mediterranean palaeoclimate research. Here, we present preliminary results of a low-resolution diatom study derived from analysis of sediment deposits of Lake Lisan, the last glacial precursor of the Dead Sea. Sediment cores were recovered during an ICDP campaign in 2010/2011 from the centre of the modern Dead Sea. 18 sediment samples were analysed to investigate (a) the preservation of diatom valves in various evaporitic deposits (b) possible shifts in diatom species composition of Lake Lisan during the Last Glacial period, and (c) if diatoms can be used as proxy indicator for lake-level and, thus, palaeoclimate reconstruction. We focus on a prominent lake-level high stand of Lake Lisan at around 28-22 ka BP, which resulted in the merging Lake Lisan and freshwater Lake Kinneret.</p><p>First results show that the diatom preservation is exceptionally good in evaporitic deposits of the sediment cores from Lake Lisan, which is contradictory to the available literature. In contrast to Holocene deposits from the Dead Sea, diatoms are abundant in all analysed samples from laminated deposits from Lake Lisan: the diatom flora is dominated by halophilous benthic diatoms, such as <em>Amphora</em> spp., <em>Halamphora</em> spp. and <em>Nitzschia</em> spp. In phases of lake-level high stands of Lake Lisan, the diatom flora shifts towards a more plankton-dominated freshwater flora containing <em>Aulacoseira</em> spp. and taxa from the <em>Cyclotella-ocellata-</em>species complex.</p>


2012 ◽  
Vol 8 (6) ◽  
pp. 5817-5866 ◽  
Author(s):  
O. Peyron ◽  
M. Magny ◽  
S. Goring ◽  
S. Joannin ◽  
J.-L. de Beaulieu ◽  
...  

Abstract. Lake-level records from Italy suggest a north–south climatic partition in the Central Mediterranean during the Holocene with respect to precipitation, but the scarcity of reliable palaeoclimatic records in the North and Central-Southern Mediterranean means new evidence is needed to validate this hypothesis. Here, we provide robust quantitative estimates of Holocene climate in the Mediterranean region based on four high-resolution pollen records from Northern (Lakes Ledro and Accesa) and Southern (Lakes Trifoglietti and Pergusa) Italy. Multiple methods are used to provide an improved assessment of the paleoclimatic reconstruction uncertainty. The multi-method approach uses the pollen-based Weighted Averaging, Weighted-Average-Partial-Least-Squares regression, Modern Analogues Technique, and the Non-Metric-Multidimensional Scaling/Generalized-Additive-Model methods. The precipitation seasonality reconstructions are validated by independent lake-level data, obtained from the same records. A climatic partition between the north and the south during the Holocene confirms the hypothesis of opposing mid-Holocene summer precipitation regimes in the Mediterranean. During the early-to-mid-Holocene the northern sites (Ledro, Accesa) are characterized by minima for summer precipitation and lake-levels while the southern sites (Trifoglietti, Pergusa) are marked by maxima for precipitation and lake-levels. During the late Holocene, both pollen-inferred precipitation and lake-levels indicate the opposite pattern, a maximum in North Italy and a minimum in Southern Italy/Sicily. Summer temperatures also show partitioning, with warm conditions in Northern Italy and cool conditions in Sicily during the early/mid-Holocene, and a reversal during the Late-Holocene. Comparison with marine cores from the Aegean Sea suggests that climate trends and gradients observed in Italy shows strong similarities with those recognized from the Aegean Sea, and more generally speaking in the Eastern Mediterranean.


Sign in / Sign up

Export Citation Format

Share Document