scholarly journals Stratigraphy, depositional environments and level reconstruction of the last interglacial Lake Samra in the Dead Sea basin

2009 ◽  
Vol 72 (1) ◽  
pp. 1-15 ◽  
Author(s):  
N. Waldmann ◽  
M. Stein ◽  
D. Ariztegui ◽  
A. Starinsky

AbstractIn this paper we describe the stratigraphy and sediments deposited in Lake Samra that occupied the Dead Sea basin between ∼ 135 and 75 ka. This information is combined with U/Th dating of primary aragonites in order to estimate a relative lake-level curve that serves as a regional paleohydrological monitor. The lake stood at an elevation of ∼ 340 m below mean sea level (MSL) during most of the last interglacial. This level is relatively higher than the average Holocene Dead Sea (∼ 400 ± 30 m below MSL). At ∼ 120 and ∼ 85 ka, Lake Samra rose to ∼ 320 m below MSL while it dropped to levels lower than ∼ 380 m below MSL at ∼ 135 and ∼ 75 ka, reflecting arid conditions in the drainage area. Lowstands are correlated with warm intervals in the Northern Hemisphere, while minor lake rises are probably related to cold episodes during MIS 5b and MIS 5d. Similar climate relationships are documented for the last glacial highstand Lake Lisan and the lowstand Holocene Dead Sea. Yet, the dominance of detrital calcites and precipitation of travertines in the Dead Sea basin during the last interglacial interval suggest intense pluvial conditions and possible contribution of southern sources of wetness to the region.

2020 ◽  
Author(s):  
Nicolas Waldmann ◽  
Yin Lu ◽  
Revital Bookman ◽  
Shmulik Marco

<p>Recording and analyzing how climate change impacts flood recurrence, basin erosion, and sedimentation can improve our understanding of these systems. The aragonite-detritus laminae couplets comprising the lacustrine formations that were deposited in the Dead Sea Basin are considered as faithful monitors of the freshwater supply to the lakes. We count a total of ~5600 laminae couplets deposited in the last 45 kyr (MIS3-MIS1) at the Dead Sea depocenter, which encompass the upper 141.6 m of the ICDP Core 5017-1. The present study shows that aragonite and detritus laminae are thinner and occur at high frequency during MIS 3-2, while they are much thicker and less frequent during MIS 1. By analyzing multiple climate-connected factors, we propose that significant lake-level drops, enhanced dust input, and low vegetative cover in the drainage basin during the last deglaciation (22-11.6 ka) have considerably increased erodible materials in the Dead Sea watershed. We find a decoupling existed between the significant lake-level drop/lake size reduction and lamina thickness change during the last deglaciation. We argue that during the last glacial and the Holocene, the variation of lamina thickness at the multiple-millennium scale was not controlled directly by the lake-level/size change. We interpret this decoupling implying the transport capacity of flash-floods is low and might be saturated by the oversupply of erodible materials, and indicating a transport-limited regime during the time period. We suggest that the observed thickness and frequency distribution of aragonite-detritus laminae points to the high frequency of small-magnitude floods during the last glacial period, in contrast to low frequency, but large-magnitude floods during the Holocene.</p>


2021 ◽  
Author(s):  
Jürgen Mey ◽  
Juluis Jara ◽  
Manfred R. Strecker

<p><span><span>The Dead Sea depression features exceptionally well preserved lacustrine sedimentary sequences and fossil lake-level markers that attest to a much more extensive lake with a maximum highstand water level of more than 200 m above the modern Dead Sea. Lake-level reconstructions based on sedimentary sequences places this highstand phase within the interval of 15-29 ka. Regional paleoclimatic records, however, indicate arid conditions during this time. This apparent contradiction has been explained by spatially heterogeneous moisture delivery resulting from a southward shift of the Westerly wind system and a change in the path and intensity of winter storms. A newly established lake level-chronology based on </span><sup><span>14</span></sup><span>C- and U/Th-dating of fossil stromatolites has provided contrasting results with respect to previous investigations. Accordingly, the paleolake-highstand was of much shorter duration and occurred at least 10 ka earlier than previously suggested</span><span>. The new lake-level curve agrees with evidence of arid glacial and humid interglacial periods in the Levant.  </span><span>In this study we compared these different lake-level reconstructions quantitatively, using a distributed hydrological balance model. This model computes evaporation based on an aerodynamic- /mass-transfer approach. Calibration and validation of this model is achieved by using ~30 years of pre-anthropogenic lake-level observations combined with interpolated climate surfaces based on weather-station records. In the paleo-hydrological reconstruction we account for parameter uncertainties using Monte-Carlo simulations. Our preliminary results show a pronounced sensitivity of the lake-level to precipitation, wind speed, and surface roughness.</span></span></p>


2007 ◽  
Vol 68 (2) ◽  
pp. 203-212 ◽  
Author(s):  
Sorin Lisker ◽  
Roi Porat ◽  
Uri Davidovich ◽  
Hanan Eshel ◽  
Stein-Erik Lauritzen ◽  
...  

AbstractThe Moringa Cave within Pleistocene sediments in the En Gedi area of the Dead Sea Fault Escarpment contains a sequence of various Pleistocene lacustrine deposits associated with higher-than-today lake levels at the Dead Sea basin. In addition it contains Chalcolithic remains and 5th century BC burials attributed to the Persian period, cemented and covered by Late Holocene travertine flowstone. These deposits represent a chain of Late Pleistocene and Holocene interconnected environmental and human events, echoing broader scale regional and global climate events. A major shift between depositional environments is associated with the rapid fall of Lake Lisan level during the latest Pleistocene. This exposed the sediments, providing for cave formation processes sometime between the latest Pleistocene (ca. 15 ka) and the Middle Holocene (ca. 4500 BC), eventually leading to human use of the cave. The Chalcolithic use of the cave can be related to a relatively moist desert environment, probably related to a shift in the location of the northern boundary of the Saharo-Arabian desert belt. The travertine layer was U–Th dated 2.46"0.10 to 2.10"0.04 ka, in agreement with the archaeological finds from the Persian period. Together with the inner consistency of the dating results, this strongly supports the reliability of the radiometric ages. The 2.46–2.10 ka travertine deposition within the presently dry cave suggests a higher recharge of the Judean Desert aquifer, correlative to a rising Dead Sea towards the end of the 1st millennium BC. This suggests a relatively moist local and regional climate facilitating human habitation of the desert.


2016 ◽  
Vol 5 (2) ◽  
pp. 244
Author(s):  
Uri Kafri

<p class="emsd-body"><span lang="EN-GB">A deep core hole, drilled in the middle of the Dead Sea penetrated the Pleistocene- Holocene section, revealed an alternating sequence of fresh water and evaporitic (gypsum, halite) deposits. The vertical facies variations were interpreted as related mainly to lake level changes during this period. The present study, however, proposes an additional factor that influenced these changes, namely subsurface seawater intrusion from the Mediterranean Sea to the endorheic Dead Sea Basin. This proposed process is controlled by the elevation and head difference between both base levels at a given time, because the Mediterranean Sea level also fluctuated during the discussed period. We find that in times of smaller head differences, and assumed lower seawater intrusion, a gypsum facies prevailed in the Dead Sea Basin. In times of greater head differences and assumed more abundant seawater intrusion a halite facies prevailed because of greater sodium chloride input into the Dead Sea.</span></p>


2020 ◽  
Author(s):  
Hannah Hartung ◽  
Jane M. Reed ◽  
Thomas Litt

&lt;p&gt;The Eastern Mediterranean, and the southern Levant in particular, is a key region for palaeoclimatological and palaeoenvironmental research due to its highly complex topography and climatic variability. Our understanding of environmental variability and its possible drivers, and the interaction with migration processes of modern &lt;em&gt;Homo sapiens&lt;/em&gt; from a source area in Africa to Europe, is still limited. This is partly because continuous sediment records of sufficient age are rare across the Mediterranean Basin. The deposits of the Dead Sea represent an ideal archive to investigate palaeoenvironmental conditions during human migration phases in the Last Glacial period (MIS 4-2).&amp;#160;&lt;/p&gt;&lt;p&gt;Diatoms (single-celled siliceous algae, Bacillariophyceae) have well-recognised potential to generate high-quality palaeolimnological data, especially in closed-basin saline lakes, but they remain one of the least-exploited proxies in Eastern Mediterranean palaeoclimate research. Here, we present preliminary results of a low-resolution diatom study derived from analysis of sediment deposits of Lake Lisan, the last glacial precursor of the Dead Sea. Sediment cores were recovered during an ICDP campaign in 2010/2011 from the centre of the modern Dead Sea. 18 sediment samples were analysed to investigate (a) the preservation of diatom valves in various evaporitic deposits (b) possible shifts in diatom species composition of Lake Lisan during the Last Glacial period, and (c) if diatoms can be used as proxy indicator for lake-level and, thus, palaeoclimate reconstruction. We focus on a prominent lake-level high stand of Lake Lisan at around 28-22 ka BP, which resulted in the merging Lake Lisan and freshwater Lake Kinneret.&lt;/p&gt;&lt;p&gt;First results show that the diatom preservation is exceptionally good in evaporitic deposits of the sediment cores from Lake Lisan, which is contradictory to the available literature. In contrast to Holocene deposits from the Dead Sea, diatoms are abundant in all analysed samples from laminated deposits from Lake Lisan: the diatom flora is dominated by halophilous benthic diatoms, such as &lt;em&gt;Amphora&lt;/em&gt; spp., &lt;em&gt;Halamphora&lt;/em&gt; spp. and &lt;em&gt;Nitzschia&lt;/em&gt; spp. In phases of lake-level high stands of Lake Lisan, the diatom flora shifts towards a more plankton-dominated freshwater flora containing &lt;em&gt;Aulacoseira&lt;/em&gt; spp. and taxa from the &lt;em&gt;Cyclotella-ocellata-&lt;/em&gt;species complex.&lt;/p&gt;


2006 ◽  
Vol 55 (3) ◽  
pp. 129-139 ◽  
Author(s):  
Avihu Ginzburg ◽  
Moshe Reshef ◽  
Zvi Ben-Avraham ◽  
Uri Schattner

2004 ◽  
Vol 141 (5) ◽  
pp. 565-572 ◽  
Author(s):  
YUVAL BARTOV ◽  
AMIR SAGY

A newly discovered active small-scale pull-apart (Mor structure), located in the western part of the Dead Sea Basin, shows recent basin-parallel extension and strike-slip faulting, and offers a rare view of pull-apart internal structure. The Mor structure is bounded by N–S-trending strike-slip faults, and cross-cut by low-angle, E–W-trending normal faults. The geometry of this pull-apart suggests that displacement between the two stepped N–S strike-slip faults of the Mor structure is transferred by the extension associated with the normal faults. The continuing deformation in this structure is evident by the observation of at least three deformation episodes between 50 ka and present. The calculated sinistral slip-rate is 3.5 mm/yr over the last 30 000 years. This slip rate indicates that the Mor structure overlies the currently most active strike-slip fault within the western border of the Dead Sea pull-apart. The Mor structure is an example of a small pull-apart basin developed within a larger pull-apart. This type of hierarchy in pull-apart structures is an indication for their ongoing evolution.


Sign in / Sign up

Export Citation Format

Share Document