scholarly journals Climate, cryosphere and carbon cycle controls on Southeast Atlantic orbital-scale carbonate deposition since the Oligocene (30–0 Ma)

2021 ◽  
Vol 17 (5) ◽  
pp. 2091-2117
Author(s):  
Anna Joy Drury ◽  
Diederik Liebrand ◽  
Thomas Westerhold ◽  
Helen M. Beddow ◽  
David A. Hodell ◽  
...  

Abstract. The evolution of the Cenozoic cryosphere from unipolar to bipolar over the past 30 million years (Myr) is broadly known. Highly resolved records of carbonate (CaCO3) content provide insight into the evolution of regional and global climate, cryosphere, and carbon cycle dynamics. Here, we generate the first Southeast Atlantic CaCO3 content record spanning the last 30 Myr, derived from X-ray fluorescence (XRF) ln(Ca / Fe) data collected at Ocean Drilling Program Site 1264 (Walvis Ridge, SE Atlantic Ocean). We present a comprehensive and continuous depth and age model for the entirety of Site 1264 (∼ 316 m; 30 Myr). This constitutes a key reference framework for future palaeoclimatic and palaeoceanographic studies at this location. We identify three phases with distinctly different orbital controls on Southeast Atlantic CaCO3 deposition, corresponding to major developments in climate, the cryosphere and the carbon cycle: (1) strong ∼ 110 kyr eccentricity pacing prevails during Oligocene–Miocene global warmth (∼ 30–13 Ma), (2) increased eccentricity-modulated precession pacing appears after the middle Miocene Climate Transition (mMCT) (∼ 14–8 Ma), and (3) pervasive obliquity pacing appears in the late Miocene (∼ 7.7–3.3 Ma) following greater importance of high-latitude processes, such as increased glacial activity and high-latitude cooling. The lowest CaCO3 content (92 %–94 %) occurs between 18.5 and 14.5 Ma, potentially reflecting dissolution caused by widespread early Miocene warmth and preceding Antarctic deglaciation across the Miocene Climatic Optimum (∼ 17–14.5 Ma) by 1.5 Myr. The emergence of precession pacing of CaCO3 deposition at Site 1264 after ∼ 14 Ma could signal a reorganisation of surface and/or deep-water circulation in this region following Antarctic reglaciation at the mMCT. The increased sensitivity to precession at Site 1264 between 14 and 13 Ma is associated with an increase in mass accumulation rates (MARs) and reflects increased regional CaCO3 productivity and/or recurrent influxes of cooler, less corrosive deep waters. The highest carbonate content (%CaCO3) and MARs indicate that the late Miocene–early Pliocene Biogenic Bloom (LMBB) occurs between ∼ 7.8 and 3.3 Ma at Site 1264; broadly contemporaneous with the LMBB in the equatorial Pacific Ocean. At Site 1264, the onset of the LMBB roughly coincides with appearance of strong obliquity pacing of %CaCO3, reflecting increased high-latitude forcing. The global expression of the LMBB may reflect increased nutrient input into the global ocean resulting from enhanced aeolian dust and/or glacial/chemical weathering fluxes, due to enhanced glacial activity and increased meridional temperature gradients. Regional variability in the timing and amplitude of the LMBB may be driven by regional differences in cooling, continental aridification and/or changes in ocean circulation in the late Miocene.

2020 ◽  
Author(s):  
Anna Joy Drury ◽  
Diederik Liebrand ◽  
Thomas Westerhold ◽  
Helen M. Beddow ◽  
David A. Hodell ◽  
...  

Abstract. The evolution of the Cenozoic Icehouse over the past 30 million years (Myr) from a unipolar to a bipolar world is broadly known; however, the exact development of orbital-scale climate variability is less well understood. Highly resolved records of carbonate (CaCO3) content provide insight into the evolution of regional and global climate, cryosphere and carbon cycle dynamics. Here, we generate the first Southeast Atlantic CaCO3 content record spanning the last 30 Myr, derived from X-ray fluorescence (XRF) ln(Ca/Fe) data collected at Ocean Drilling Program Site 1264 (Angola Basin side of the Walvis Ridge, SE Atlantic Ocean). We present a comprehensive and continuous depth and age model for the entirety of Site 1264 (~316 m; 30 Myr), which constitutes a key reference framework for future palaeoclimatic and palaeoceanographic studies at this site. We identify three phases with distinctly different orbital controls on Southeast Atlantic CaCO3 deposition, corresponding to major developments in climate, the cryosphere and/or the carbon cycle: 1) strong ~110 kyr eccentricity pacing prevails during Oligo-Miocene global warmth (~30–13 Ma); 2) increased eccentricity-modulated precession pacing appears after the mid Miocene Climate Transition (mMCT) (~14–8 Ma); 3) strong obliquity pacing appears in the late Miocene (~7.7–3.3 Ma) following the increasing influence of high-latitude processes. The lowest CaCO3 content (92–94 %) occur between 18.5–14.5 Ma, potentially reflecting dissolution caused by widespread early Miocene warmth and preceding Antarctic deglaciation across the Miocene Climate Optimum (~17–14.5 Ma) by 1.5 Myr. The emergence of precession-pacing of CaCO3 deposition at Site 1264 after ~14 Ma could signal a reorganisation of surface and/or deep-water circulation in this region following Antarctic reglaciation at the mMCT. The increased sensitivity to precession at Site 1264 is associated with an increase in mass accumulation rates (MARs) and reflects increased regional CaCO3 productivity and/or an influx of cooler, less corrosive deep-waters. The highest %CaCO3 and MARs indicate the late Miocene Biogenic Bloom (LMBB) occurs between ~7.8–3.3 Ma at Site 1264, which is broadly, but not exactly, contemporaneous with the LMBB in the equatorial Pacific Ocean. The global expression of the LMBB may reflect an increased nutrient input into the global ocean resulting from enhanced aeolian dust and/or glacial/chemical weathering fluxes. Regional variability in the timing and amplitude of the LMBB may be driven by regional differences in cooling, continental aridification and/or changes in ocean circulation in the late Miocene.


2021 ◽  
Author(s):  
Anna Joy Drury ◽  
Diederik Liebrand ◽  
Thomas Westerhold ◽  
Helen M. Beddow ◽  
David A. Hodell ◽  
...  

<p>The evolution of Cenozoic climate since 30 million years ago (Ma) has broadly chartered the transformation from a unipolar to a bipolar world. Highly resolved records of carbonate content (%CaCO<sub>3</sub>) can provide insight into regional responses to shifting climate, cryosphere and carbon cycle dynamics. Here, we generate the first South-East Atlantic %CaCO<sub>3</sub> record spanning 30-0 Ma, derived from X-ray fluorescence (XRF) ln(Ca/Fe) data collected at Ocean Drilling Program Site 1264, located on the Angola Basin side of the Walvis Ridge (SE Atlantic Ocean). We present a comprehensive and continuous depth and age model for the entirety of Site 1264 (~316 m; 30-0 Ma), which constitutes a key reference framework for future palaeoclimatic and palaeoceanographic studies at this location.</p><p>We can identify three phases with a distinct orbital imprint on South-East Atlantic CaCO<sub>3</sub> deposition, broadly occurring across major developments in climate, the cryosphere and/or the carbon cycle: 1) strong ~110 kyr eccentricity pacing prevails during Oligo-Miocene global warmth (~30-13 Ma); 2) eccentricity-modulated precession imprints more strongly after the mid Miocene Climate Transition (mMCT) (~14-8 Ma); 3) strong obliquity pacing prevails in the late Miocene (~7.7-3.3 Ma) following the increasing influence of high-latitude processes.</p><p>The lowest %CaCO<sub>3</sub> (92-94%) occur between 18.5-14.5 Ma, potentially reflecting increased dissolution or decreased productivity, probably caused by widespread early Miocene warmth. Around 14 Ma, the increased sensitivity to precession at Site 1264 is associated with an increase in mass accumulation rates (MARs) and could reflect increased regional CaCO<sub>3</sub> productivity and/or an influx of less corrosive deep water following regional changes in surface and/or deep-water circulation after Antarctic reglaciation across the mMCT.</p><p>The highest %CaCO<sub>3</sub> and MARs indicate the late Miocene Biogenic Bloom (LMBB) occurs between ~7.8-3.3 Ma at Site 1264, which is broadly, but not exactly, contemporaneous with the LMBB in the equatorial Pacific Ocean. Global similarities in the expression of the LMBB may reflect an increased nutrient input into the global ocean resulting from enhanced aeolian dust and/or glacial/chemical weathering fluxes, whereas regional variability in the timing and amplitude of the LMBB may be driven by regional differences in cooling, continental aridification and/or changes in ocean circulation during the latest Miocene.</p>


2013 ◽  
Vol 26 (16) ◽  
pp. 5810-5826 ◽  
Author(s):  
Tong Lee ◽  
Duane E. Waliser ◽  
Jui-Lin F. Li ◽  
Felix W. Landerer ◽  
Michelle M. Gierach

Abstract Wind stress measurements from the Quick Scatterometer (QuikSCAT) satellite and two atmospheric reanalysis products are used to evaluate the annual mean and seasonal cycle of wind stress simulated by phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5). The ensemble CMIP3 and CMIP5 wind stresses are very similar to each other. Generally speaking, there is no significant improvement of CMIP5 over CMIP3. The CMIP ensemble–average zonal wind stress has eastward biases at midlatitude westerly wind regions (30°–50°N and 30°–50°S, with CMIP being too strong by as much as 55%), westward biases in subtropical–tropical easterly wind regions (15°–25°N and 15°–25°S), and westward biases at high-latitude regions (poleward of 55°S and 55°N). These biases correspond to too strong anticyclonic (cyclonic) wind stress curl over the subtropical (subpolar) ocean gyres, which would strengthen these gyres and influence oceanic meridional heat transport. In the equatorial zone, significant biases of CMIP wind exist in individual basins. In the equatorial Atlantic and Indian Oceans, CMIP ensemble zonal wind stresses are too weak and result in too small of an east–west gradient of sea level. In the equatorial Pacific Ocean, CMIP zonal wind stresses are too weak in the central and too strong in the western Pacific. These biases have important implications for the simulation of various modes of climate variability originating in the tropics. The CMIP as a whole overestimate the magnitude of seasonal variability by almost 50% when averaged over the entire global ocean. The biased wind stress climatologies in CMIP not only have implications for the simulated ocean circulation and climate variability but other air–sea fluxes as well.


Geology ◽  
2020 ◽  
Vol 48 (12) ◽  
pp. 1194-1199 ◽  
Author(s):  
Wouter de Weger ◽  
F. Javier Hernández-Molina ◽  
Rachel Flecker ◽  
Francisco J. Sierro ◽  
Domenico Chiarella ◽  
...  

Abstract Paleoceanographic information from submarine overflows in the vicinity of oceanic gateways is of major importance for resolving the role of ocean circulation in modulating Earth’s climate. Earth system models are currently the favored way to study the impact of gateways on global-scale processes, but studies on overflow-related deposits are more suitable to understand the detailed changes. Such deposits, however, had not yet been documented in outcrop. Here, we present a unique late Miocene contourite channel system from the Rifian Corridor (Morocco) related to the initiation of Mediterranean Outflow Water (MOW). Two channel branches were identified consisting of three vertically stacked channelized sandstone units encased in muddy deposits. Both branches have different channel-fill characteristics. Our findings provide strong evidence for intermittent behavior of overflow controlled by tectonic processes and regional climatic change. These fluctuations in paleo-MOW intermittently influenced global ocean circulation.


1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


Tellus B ◽  
2006 ◽  
Vol 58 (4) ◽  
Author(s):  
Emily Lane ◽  
Synte Peacock ◽  
Juan M. Restrepo

Author(s):  
Pontus Lurcock ◽  
Fabio Florindo

Antarctic climate changes have been reconstructed from ice and sediment cores and numerical models (which also predict future changes). Major ice sheets first appeared 34 million years ago (Ma) and fluctuated throughout the Oligocene, with an overall cooling trend. Ice volume more than doubled at the Oligocene-Miocene boundary. Fluctuating Miocene temperatures peaked at 17–14 Ma, followed by dramatic cooling. Cooling continued through the Pliocene and Pleistocene, with another major glacial expansion at 3–2 Ma. Several interacting drivers control Antarctic climate. On timescales of 10,000–100,000 years, insolation varies with orbital cycles, causing periodic climate variations. Opening of Southern Ocean gateways produced a circumpolar current that thermally isolated Antarctica. Declining atmospheric CO2 triggered Cenozoic glaciation. Antarctic glaciations affect global climate by lowering sea level, intensifying atmospheric circulation, and increasing planetary albedo. Ice sheets interact with ocean water, forming water masses that play a key role in global ocean circulation.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Carine G. van der Boog ◽  
Henk A. Dijkstra ◽  
Julie D. Pietrzak ◽  
Caroline A. Katsman

AbstractDouble-diffusive processes enhance diapycnal mixing of heat and salt in the open ocean. However, observationally based evidence of the effects of double-diffusive mixing on the global ocean circulation is lacking. Here we analyze the occurrence of double-diffusive thermohaline staircases in a dataset containing over 480,000 temperature and salinity profiles from Argo floats and Ice-Tethered Profilers. We show that about 14% of all profiles contains thermohaline staircases that appear clustered in specific regions, with one hitherto unknown cluster overlying the westward flowing waters of the Tasman Leakage. We estimate the combined contribution of double-diffusive fluxes in all thermohaline staircases to the global ocean’s mechanical energy budget as 7.5 GW [0.1 GW; 32.8 GW]. This is small compared to the estimated energy required to maintain the observed ocean stratification of roughly 2 TW. Nevertheless, we suggest that the regional effects, for example near Australia, could be pronounced.


Sign in / Sign up

Export Citation Format

Share Document