scholarly journals Climate changes recorded by Hani Peat in Northeast China over the past 13.8 cal ka BP.

2019 ◽  
Author(s):  
Anonymous
2019 ◽  
Author(s):  
Ge Shi ◽  
Hong Yan ◽  
Wenchao Zhang ◽  
Haobai Fei ◽  
Shuanshuan Cao ◽  
...  

Abstract. The Hani peatland is one of the few that remain well-preserved in northeast China, which makes it a valuable site for paleoclimate research. Here, two sediment cores, which cover the past 13.8 ka, were collected, and loss on Ignition (LOI550°C) and X-ray Fluorescence Scanning (XRF) were carried out to build organic matter content and Rb/Sr ratio profiles, in order to assess the climate changes and associated East Asian Summer Monsoon (EASM) evolution since the last deglaciation. The results show that organic content and the chemical weathering index increased from the early to mid Holocene, possibly reflecting increased precipitation and an enhanced EASM. During the mid to late Holocene, the organic content and the chemical weathering index values decreased, implying that the EASM weakened. The variations of monsoon intensity during the Holocene derived from the Hani peat are consistent with the EASM reconstructions from the Gonghai, Daihai, Qinghai Lake, Hexiazi Island and the Yulin loess-paleosol section. Thus the Hani and other published EASM records from northern China demonstrate that the evolution of EASM during the Holocene was likely to be dominated by the combination of the influences from changing solar insolation and northern hemisphere ice volumes. In addition, a 0.5–2 ka band filtering analysis of LOI550°C data show that millennial scale climate changes in northeast China were teleconnected with the North Atlantic ice-rafted debris and solar irradiance records, indicating that both North Atlantic climate changes and solar activity probably affected EASM variations.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Masayoshi Ishii ◽  
Nobuhito Mori

Abstract A large-ensemble climate simulation database, which is known as the database for policy decision-making for future climate changes (d4PDF), was designed for climate change risk assessments. Since the completion of the first set of climate simulations in 2015, the database has been growing continuously. It contains the results of ensemble simulations conducted over a total of thousands years respectively for past and future climates using high-resolution global (60 km horizontal mesh) and regional (20 km mesh) atmospheric models. Several sets of future climate simulations are available, in which global mean surface air temperatures are forced to be higher by 4 K, 2 K, and 1.5 K relative to preindustrial levels. Nonwarming past climate simulations are incorporated in d4PDF along with the past climate simulations. The total data volume is approximately 2 petabytes. The atmospheric models satisfactorily simulate the past climate in terms of climatology, natural variations, and extreme events such as heavy precipitation and tropical cyclones. In addition, data users can obtain statistically significant changes in mean states or weather and climate extremes of interest between the past and future climates via a simple arithmetic computation without any statistical assumptions. The database is helpful in understanding future changes in climate states and in attributing past climate events to global warming. Impact assessment studies for climate changes have concurrently been performed in various research areas such as natural hazard, hydrology, civil engineering, agriculture, health, and insurance. The database has now become essential for promoting climate and risk assessment studies and for devising climate adaptation policies. Moreover, it has helped in establishing an interdisciplinary research community on global warming across Japan.


2021 ◽  
Vol 164 (3-4) ◽  
Author(s):  
Xiaoying Xue ◽  
Guoyu Ren ◽  
Xiubao Sun ◽  
Panfeng Zhang ◽  
Yuyu Ren ◽  
...  

AbstractThe understanding of centennial trends of extreme temperature has been impeded due to the lack of early-year observations. In this paper, we collect and digitize the daily temperature data set of Northeast China Yingkou meteorological station since 1904. After quality control and homogenization, we analyze the changes of mean and extreme temperature in the past 114 years. The results show that mean temperature (Tmean), maximum temperature (Tmax), and minimum temperature (Tmin) all have increasing trends during 1904–2017. The increase of Tmin is the most obvious with the rate of 0.34 °C/decade. The most significant warming occurs in spring and winter with the rate of Tmean reaching 0.32 °C/decade and 0.31 °C/decade, respectively. Most of the extreme temperature indices as defined using absolute and relative thresholds of Tmax and Tmin also show significant changes, with cold events witnessing a more significant downward trend. The change is similar to that reported for global land and China for the past six decades. It is also found that the extreme highest temperature (1958) and lowest temperature (1920) records all occurred in the first half of the whole period, and the change of extreme temperature indices before 1950 is different from that of the recent decades, in particular for diurnal temperature range (DTR), which shows an opposite trend in the two time periods.


Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 752
Author(s):  
Liu ◽  
Bao ◽  
Bao

Chinese pine (Pinus tabulaeformis Carr.) plays an important role in maintaining ecosystem health and stability in western Liaoning Province and the southern Horqin sand land, Northeast China, with benefits including sand fixation and soil erosion. In the context of climate change, developing a better understanding of the relationship between climate factors and growth rates of this species will be extremely valuable in guiding management activities and meeting regional conservation objectives. Here, the results based on two groups of tree-ring samples show that the radial growth of Chinese pine is controlled primarily by water conditions. The longer chronology had the highest correlation coefficient with the January–September mean self-calibrating Palmer Drought Severity Index (scPDSI); therefore, drought variability was reconstructed for the period 1859–2014. Statistical analysis showed that our model explained 41.9% of the variance in radial growth during the 1951–2014 calibration period. Extreme dry and wet events, defined as the criteria of one standard deviation less or greater than the mean value, accounted for 19.9% and 18.6% of the 156-year climate record, respectively. During the past century, the regional hydroclimate experienced significant long-term fluctuations. The dry periods occurred from the early-1900s–1930s and 1980s–2000s, and the wet periods occurred from the 1940s–1970s. The drought reconstruction was consistent with the decreasing trend of the East Asian summer monsoon since the late 1970s. The reconstructed temporal patterns in hydroclimate in western Liaoning were closely related to the large-scale climate drivers in the North Pacific and the tropical equatorial Pacific. The teleconnections were confirmed by spatial correlations between the reconstructed sequence and sea surface temperature (SST) in the North Pacific, as well as the correlations with the Pacific Decadal Oscillation (PDO) and El Niño Southern Oscillation (ENSO) indices. Aerosols played an important role in affecting drought variations over the past several decades. Moisture stress caused by global warming and interdecadal changes in the PDO will have long-term effects on the growth of pines in the study area in the future.


2012 ◽  
Vol 56 (2) ◽  
pp. 321-329 ◽  
Author(s):  
QuanSheng Ge ◽  
JingYun Zheng ◽  
ZhiXin Hao ◽  
HaoLong Liu

2021 ◽  
Author(s):  
Kseniia Golubenko ◽  
Eugene Rozanov ◽  
Genady Kovaltsov ◽  
Ari-Pekka Leppänen ◽  
Ilya Usoskin

<p>We present the first results of modelling of the short-living cosmogenic isotope <sup>7</sup>Be production, deposition, and transport using the chemistry-climate model SOCOLv<sub>3.0</sub> aimed to study solar-terrestrial interactions and climate changes. We implemented an interactive deposition scheme,  based on gas tracers with and without nudging to the known meteorological fields. Production of <sup>7</sup>Be was modelled using the 3D time-dependent Cosmic Ray induced Atmospheric Cascade (CRAC) model. The simulations were compared with the real concentrations (activity) and depositions measurements of <sup>7</sup>Be in the air and water at Finnish stations. We have successfully reproduced and estimated the variability of the cosmogenic isotope <sup>7</sup>Be produced by the galactic cosmic rays (GCR) on time scales longer than about a month, for the period of 2002–2008. The agreement between the modelled and measured data is very good (within 12%) providing a solid validation for the ability of the SOCOL CCM to reliably model production, transport, and deposition of cosmogenic isotopes, which is needed for precise studies of cosmic-ray variability in the past. </p>


Sign in / Sign up

Export Citation Format

Share Document