scholarly journals Long-term summer sunshine/moisture stress reconstruction from tree-ring widths from Bosnia and Herzegovina

2013 ◽  
Vol 9 (1) ◽  
pp. 27-40 ◽  
Author(s):  
S. Poljanšek ◽  
A. Ceglar ◽  
T. Levanič

Abstract. We present the first summer sunshine reconstruction from tree-ring data for the western part of the Balkan Peninsula. Summer sunshine is tightly connected with moisture stress in trees, because the moisture stress and therefore the width of annual tree-rings is under the influence of the direct and interactive effects of sunshine duration (temperature, precipitation, cloud cover and evapotranspiration). The reconstruction is based on a calibrated z-scored mean chronology, calculated from tree-ring width measurements from 7 representative black pine (Pinus nigra Arnold) sites in Bosnia and Herzegovina (BiH). A combined regression and scaling approach was used for the reconstruction of the summer sunshine. We found a significant negative correlation (r = −0.54, p < 0.0001) with mean June–July sunshine hours from Osijek meteorological station (Croatia). The developed model was used for reconstruction of summer sunshine for the time period 1660–2010. We identified extreme summer events and compared them to available documentary historical sources of drought, volcanic eruptions and other reconstructions from the broader region. All extreme summers with low sunshine hours (1712, 1810, 1815, 1843, 1899 and 1966) are connected with volcanic eruptions.

2007 ◽  
Vol 67 (1) ◽  
pp. 57-68 ◽  
Author(s):  
Matthew W. Salzer ◽  
Malcolm K. Hughes

AbstractMany years of low growth identified in a western USA regional chronology of upper forest border bristlecone pine (Pinus longaeva and Pinus aristata) over the last 5000 yr coincide with known large explosive volcanic eruptions and/or ice core signals of past eruptions. Over the last millennium the agreement between the tree-ring data and volcano/ice-core data is high: years of ring-width minima can be matched with known volcanic eruptions or ice-core volcanic signals in 86% of cases. In previous millennia, while there is substantial concurrence, the agreement decreases with increasing antiquity. Many of the bristlecone pine ring-width minima occurred at the same time as ring-width minima in high latitude trees from northwestern Siberia and/or northern Finland over the past 4000–5000 yr, suggesting climatically-effective events of at least hemispheric scale. In contrast with the ice-core records, the agreement between widely separated tree-ring records does not decrease with increasing antiquity. These data suggest specific intervals when the climate system was or was not particularly sensitive enough to volcanic forcing to affect the trees, and they augment the ice core record in a number of ways: by providing confirmation from an alternative proxy record for volcanic signals, by suggesting alternative dates for eruptions, and by adding to the list of years when volcanic events of global significance were likely, including the mid-2nd-millennium BC eruption of Thera.


2019 ◽  
Vol 15 (2) ◽  
pp. 685-700 ◽  
Author(s):  
Olga V. Churakova (Sidorova) ◽  
Marina V. Fonti ◽  
Matthias Saurer ◽  
Sébastien Guillet ◽  
Christophe Corona ◽  
...  

Abstract. Stratospheric volcanic eruptions have far-reaching impacts on global climate and society. Tree rings can provide valuable climatic information on these impacts across different spatial and temporal scales. To detect temperature and hydroclimatic changes after strong stratospheric Common Era (CE) volcanic eruptions for the last 1500 years (535 CE unknown, 540 CE unknown, 1257 CE Samalas, 1640 CE Parker, 1815 CE Tambora, and 1991 CE Pinatubo), we measured and analyzed tree-ring width (TRW), maximum latewood density (MXD), cell wall thickness (CWT), and δ13C and δ18O in tree-ring cellulose chronologies of climate-sensitive larch trees from three different Siberian regions (northeastern Yakutia – YAK, eastern Taimyr – TAY, and Russian Altai – ALT). All tree-ring proxies proved to encode a significant and specific climatic signal of the growing season. Our findings suggest that TRW, MXD, and CWT show strong negative summer air temperature anomalies in 536, 541–542, and 1258–1259 at all studied regions. Based on δ13C, 536 was extremely humid at YAK, as was 537–538 in TAY. No extreme hydroclimatic anomalies occurred in Siberia after the volcanic eruptions in 1640, 1815, and 1991, except for 1817 at ALT. The signal stored in δ18O indicated significantly lower summer sunshine duration in 542 and 1258–1259 at YAK and 536 at ALT. Our results show that trees growing at YAK and ALT mainly responded the first year after the eruptions, whereas at TAY, the growth response occurred after 2 years. The fact that differences exist in climate responses to volcanic eruptions – both in space and time – underlines the added value of a multiple tree-ring proxy assessment. As such, the various indicators used clearly help to provide a more realistic picture of the impact of volcanic eruption on past climate dynamics, which is fundamental for an improved understanding of climate dynamics, but also for the validation of global climate models.


2012 ◽  
Vol 8 (5) ◽  
pp. 4401-4442 ◽  
Author(s):  
S. Poljanšek ◽  
A. Ceglar ◽  
T. Levanič

Abstract. We present the first spring and summer temperature reconstruction for the north-western part of the Balkan Peninsula. The reconstruction is based on tree-ring width measurements from 7 representative black pine (Pinus nigra Arnold) sites in Bosnia and Herzegovina (BiH). We found a significant, positive influence of above-average January–March temperatures on 4 sites (Blace, Peručica, Šator, Konjuh) and a negative influence of above-average May–August temperatures and a positive relationship with an above-average sum of May–August precipitation on tree-ring width formation from 3 sites (Krivaja, Prusac, Šipovo). A 31-yr running correlation between temperature and precipitation of the May–August period and tree-ring indices gave a stable relationship between 1901 and the 1960s, after which values of correlation coefficients decrease to the level of significance. A change in summer cyclones in the central part of the Adriatic Sea is presented as a possible cause of the divergence with the climate signal. In the period of calibration and verification of the linear model for the group of 3 sites (Krivaja, Prusac, Šipovo), the best relationship was found between tree-ring indices and mean May–August temperatures of the current year. For the group of 4 sites (Blace, Peručica, Šator, Konjuh), the relationship between tree-ring indices and mean January–March temperatures of the current year is the strongest. The developed models were used for reconstruction of May–August temperatures for BiH for the period 1701–1901 and January–March temperatures for the period 1685–1901. Using the method of percentiles (85th and 15th) we identified extreme hot/cool summers and warm/cold springs and compared them to available documentary historical sources and other reconstructions from the broader region.


2019 ◽  
Vol 32 (24) ◽  
pp. 8713-8731 ◽  
Author(s):  
Lucie J. Lücke ◽  
Gabriele C. Hegerl ◽  
Andrew P. Schurer ◽  
Rob Wilson

Abstract Quantifying past climate variation and attributing its causes improves our understanding of the natural variability of the climate system. Tree-ring-based proxies have provided skillful and highly resolved reconstructions of temperature and hydroclimate of the last millennium. However, like all proxies, they are subject to uncertainties arising from varying data quality, coverage, and reconstruction methodology. Previous studies have suggested that biological-based memory processes could cause spectral biases in climate reconstructions. This study determines the effects of such biases on reconstructed temperature variability and the resultant implications for detection and attribution studies. We find that introducing persistent memory, reflecting the spectral properties of tree-ring data, can change the variability of pseudoproxy reconstructions compared to the surrogate climate and resolve certain model–proxy discrepancies. This is especially the case for proxies based on ring-width data. Such memory inflates the difference between the Medieval Climate Anomaly and the Little Ice Age and suppresses and extends the cooling in response to volcanic eruptions. When accounting for memory effects, climate model data can reproduce long-term cooling after volcanic eruptions, as seen in proxy reconstructions. Results of detection and attribution studies show that signals in reconstructions as well as residual unforced variability are consistent with those in climate models when the model fingerprints are adjusted to reflect autoregressive memory as found in tree rings.


Author(s):  
Olga V. Churakova (Sidorova) ◽  
Marina V. Fonti ◽  
Alexander V. Kirdyanov ◽  
Vladimir S. Myglan ◽  
Valentin V. Barinov ◽  
...  

Stratospheric volcanic eruptions have had significant impacts on the radiation budget, atmospheric and surface temperatures, precipitation and regional weather patterns, resulting in global climatic changes. The changes associated with such eruptions most commonly result in cooling during several years after events. This study aimed to reveal eco-physiological response of larch trees from northeastern Yakutia (YAK), eastern Taimyr (TAY) and Altai (ALT) regions to climatic anomalies after major volcanic eruptions CE 535, 540, 1257, 1641, 1815 and 1991 using new multiple tree-ring parameters: tree-ring width (TRW), maximum latewood density (MXD), cell wall thicknesses (CWT), δ13C and δ18O in tree-ring cellulose. This investigation showed that TRW, CWT, MXD and δ18O chronologies recorded temperature signal, while information about precipitation and vapor pressure deficit was captured by δ13C chronologies. Sunshine duration was well recorded in δ18O from YAK and ALT. Tree-ring parameters recorded cold, wet and cloudy summer anomalies during the 6th and 13th centuries. However, significant summer anomalies after Tambora (1815) and Pinatubo (1991) eruptions were not captured by any tree-ring parameters


2018 ◽  
Author(s):  
Olga V. Churakova ◽  
Marina V. Fonti ◽  
Matthias Saurer ◽  
Sébastien Guillet ◽  
Christophe Corona ◽  
...  

Abstract. Stratospheric volcanic eruptions have far-reaching impacts on global climate and society. Tree rings can provide valuable climatic information on these impacts across different spatial and temporal scales. Here we explore the suitability of tree-ring width (TRW), maximum latewood density (MXD), cell wall thickness (CWT), and δ13C and δ18O in tree-ring cellulose for the detection of climatic changes in northeastern Yakutia (YAK), eastern Taimyr (TAY) and Russian Altai (ALT) sites caused by six largest Common Era stratospheric volcanic eruptions (535, 540, 1257, 1640, 1815 and 1991). Our findings suggest that TRW, MXD, and CWT show strong summer air temperature anomalies in 536, 541–542, 1258–1259 at all study sites. However, they do not reveal distinct and coherent fingerprints after other eruptions. Based on δ13C data, 536 was extremely humid in YAK and TAY, whereas 541 and 542 were humid years in TAY and ALT. In contrast, the 1257 eruption of Samalas likely triggered a sequence of at least two dry summers across all three Siberian sites. No further extreme hydro-climatic anomalies occurred at Siberian sites in the aftermath of the 1991 eruption. Summer sunshine duration decreased significantly in 536, 541–542, 1258–1259 in YAK, and 536 in ALT. Conversely, 1991 was very sunny in YAK. Since climatic responses to large volcanic eruptions are different, and thus affect ecosystem functioning and productivity differently in space and time, a combined assessment of multiple tree-ring parameters is needed to provide a more complete picture of past climate dynamics, which in turns appears fundamental to validate global climate models.


2017 ◽  
Vol 41 (4) ◽  
pp. 478-495 ◽  
Author(s):  
UK Thapa ◽  
S St. George ◽  
DK Kharal ◽  
NP Gaire

The climate of Nepal has changed rapidly over the recent decades, but most instrumental records of weather and hydrology only extend back to the 1980s. Tree rings can provide a longer perspective on recent environmental changes, and since the early 2000s, a new round of field initiatives by international researchers and Nepali scientists have more than doubled the size of the country’s tree-ring network. In this paper, we present a comprehensive analysis of the current tree-ring width network for Nepal, and use this network to estimate changes in forest growth nation-wide during the last four centuries. Ring-width chronologies in Nepal have been developed from 11 tree species, and half of the records span at least 290 years. The Nepal tree-ring width network provides a robust estimate of annual forest growth over roughly the last four centuries, but prior to this point, our mean ring-width composite fluctuates wildly due to low sample replication. Over the last four centuries, two major events are prominent in the all-Nepal composite: (i) a prolonged and widespread growth suppression during the early 1800s; and (ii) heightened growth during the most recent decade. The early 19th century decline in tree growth coincides with two major Indonesian eruptions, and suggests that short-term disturbances related to climate extremes can exert a lasting influence on the vigor of Nepal’s forests. Growth increases since AD 2000 are mainly apparent in high-elevation fir, which may be a consequence of the observed trend towards warmer temperatures, particularly during winter. This synthesis effort should be useful to establish baselines for tree-ring data in Nepal and provide a broader context to evaluate the sensitivity or behavior of this proxy in the central Himalayas.


2021 ◽  
Author(s):  
Jonathan Barichivich ◽  
Philippe Peylin ◽  
Valérie Daux ◽  
Camille Risi ◽  
Jina Jeong ◽  
...  

&lt;p&gt;Gradual anthropogenic warming and parallel changes in the major global biogeochemical cycles are slowly pushing forest ecosystems into novel growing conditions, with uncertain consequences for ecosystem dynamics and climate. Short-term forest responses (i.e., years to a decade) to global change factors are relatively well understood and skilfully simulated by land surface models (LSMs). However, confidence on model projections weaken towards longer time scales and to the future, mainly because the long-term responses (i.e., decade to century) of these models remain unconstrained. This issue limits confidence on climate model projections. Annually-resolved tree-ring records, extending back to pre-industrial conditions, have the potential to constrain model responses at interannual to centennial time scales. Here, we constrain the representation of tree growth and physiology in the ORCHIDEE global land surface model using the simulated interannual variability of tree-ring width and carbon (&amp;#916;&lt;sup&gt;13&lt;/sup&gt;C) and oxygen (&amp;#948;&lt;sup&gt;18&lt;/sup&gt;O) stable isotopes in six sites in boreal and temperate Europe.&amp;#160; The model simulates &amp;#916;&lt;sup&gt;13&lt;/sup&gt;C (r = 0.31-0.80) and &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O (r = 0.36-0.74) variability better than tree-ring width variability (r &lt; 0.55), with an overall skill similar to that of other state-of-the-art models such as MAIDENiso and LPX-Bern. These results show that growth variability is not well represented, and that the parameterization of leaf-level physiological responses to drought stress in the temperate region can be improved with tree-ring data. The representation of carbon storage and remobilization dynamics is critical to improve the realism of simulated growth variability, temporal carrying over and recovery of forest ecosystems after climate extremes. The simulated physiological response to rising CO2 over the 20th century is consistent with tree-ring data in the temperate region, despite an overestimation of seasonal drought stress and stomatal control on photosynthesis. Photosynthesis correlates directly with isotopic variability, but correlations with &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O combine physiological effects and climate variability impacts on source water signatures. The integration of tree-ring data (i.e. the triple constraint: width, &amp;#916;&lt;sup&gt;13&lt;/sup&gt;C and &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O) and land surface models as demonstrated here should contribute towards reducing current uncertainties in forest carbon and water cycling.&lt;/p&gt;


2014 ◽  
Vol 10 (2) ◽  
pp. 437-449 ◽  
Author(s):  
P. Breitenmoser ◽  
S. Brönnimann ◽  
D. Frank

Abstract. We investigate relationships between climate and tree-ring data on a global scale using the process-based Vaganov–Shashkin Lite (VSL) forward model of tree-ring width formation. The VSL model requires as inputs only latitude, monthly mean temperature, and monthly accumulated precipitation. Hence, this simple, process-based model enables ring-width simulation at any location where monthly climate records exist. In this study, we analyse the growth response of simulated tree rings to monthly climate conditions obtained from the CRU TS3.1 data set back to 1901. Our key aims are (a) to assess the VSL model performance by examining the relations between simulated and observed growth at 2287 globally distributed sites, (b) indentify optimal growth parameters found during the model calibration, and (c) to evaluate the potential of the VSL model as an observation operator for data-assimilation-based reconstructions of climate from tree-ring width. The assessment of the growth-onset threshold temperature of approximately 4–6 °C for most sites and species using a Bayesian estimation approach complements other studies on the lower temperature limits where plant growth may be sustained. Our results suggest that the VSL model skilfully simulates site level tree-ring series in response to climate forcing for a wide range of environmental conditions and species. Spatial aggregation of the tree-ring chronologies to reduce non-climatic noise at the site level yielded notable improvements in the coherence between modelled and actual growth. The resulting distinct and coherent patterns of significant relationships between the aggregated and simulated series further demonstrate the VSL model's ability to skilfully capture the climatic signal contained in tree-ring series. Finally, we propose that the VSL model can be used as an observation operator in data assimilation approaches to reconstruct past climate.


Sign in / Sign up

Export Citation Format

Share Document