scholarly journals The EDC3 chronology for the EPICA Dome C ice core

2007 ◽  
Vol 3 (2) ◽  
pp. 575-606 ◽  
Author(s):  
F. Parrenin ◽  
J.-M. Barnola ◽  
J. Beer ◽  
T. Blunier ◽  
E. Castellano ◽  
...  

Abstract. The EPICA (European Project for Ice Coring in Antarctica) Dome C drilling in East Antarctica has now been completed to a depth of 3260 m, at only a few meters above bedrock. Here we present the new official EDC3 chronology, which is based on the use of 1) a snow accumulation and mechanical flow model, and 2) a set of independent age markers along the core. These are obtained by pattern matching of recorded parameters to either absolutely dated paleoclimatic records, or to insolation variations. We show that this new time scale is in excellent agreement with the Dome Fuji and Vostok ice core time scales back to 100 kyr within 1 kyr. Discrepancies larger than 3 kyr arise during MIS 5.4, 5.5 and 6, which points to anomalies in either snow accumulation or mechanical flow during these time periods. We estimate that EDC3 gives accurate event durations within 20% (2σ ) back to MIS11 and accurate absolute ages with a maximum uncertainty of 6 kyr back to 800 kyr.

2007 ◽  
Vol 3 (3) ◽  
pp. 485-497 ◽  
Author(s):  
F. Parrenin ◽  
J.-M. Barnola ◽  
J. Beer ◽  
T. Blunier ◽  
E. Castellano ◽  
...  

Abstract. The EPICA (European Project for Ice Coring in Antarctica) Dome C drilling in East Antarctica has now been completed to a depth of 3260 m, at only a few meters above bedrock. Here we present the new EDC3 chronology, which is based on the use of 1) a snow accumulation and mechanical flow model, and 2) a set of independent age markers along the core. These are obtained by pattern matching of recorded parameters to either absolutely dated paleoclimatic records, or to insolation variations. We show that this new time scale is in excellent agreement with the Dome Fuji and Vostok ice core time scales back to 100 kyr within 1 kyr. Discrepancies larger than 3 kyr arise during MIS 5.4, 5.5 and 6, which points to anomalies in either snow accumulation or mechanical flow during these time periods. We estimate that EDC3 gives accurate event durations within 20% (2σ) back to MIS11 and accurate absolute ages with a maximum uncertainty of 6 kyr back to 800 kyr.


1969 ◽  
Vol 8 (53) ◽  
pp. 215-223 ◽  
Author(s):  
W. Dansgaard ◽  
S. J. Johnsen

A flow model is described for the Camp Century area in Greenland. The horizontal velocity profile along the core is assumed to be uniform from the surface down to y = 400 m above the bottom. Below this level, the horizontal velocity vx, is assumed to decrease proportionally to y. Furthermore, at a given y, vx is assumed to be proportional to the distance x from the ice divide. The resulting vertical strain-rate under steady-state conditions gives the age of the ice as a function of y. The flow model has explained the measured temperature profile, and the time scale has been verified by comparison between observed stable isotope variations and past climatic changes (at least 70 000 years back in time) estimated by other methods.


1988 ◽  
Vol 10 ◽  
pp. 43-47 ◽  
Author(s):  
W. Graf ◽  
O. Reinwarth ◽  
H. Moser ◽  
W. Stichler

A 100 m ice core from the Ronne Ice Shelf, drilled during the 1983-84 field season, was dated by isotopic stratigraphy, using the well-known seasonal variation in the 18O content in firn and ice; the layers at a depth of 89 m are probably 400 years old. Layer thicknesses deduced from the 18O profile indicate short-term variations of the snow-accumulation rate over the last 400 years. The area of deposition of the material recovered with the core is estimated by a two-dimensional flow model and by the 18O content of the core, which decreases from –27.5‰ in the upper part of the core to –32.0‰ at 89 m depth.


1969 ◽  
Vol 8 (53) ◽  
pp. 215-223 ◽  
Author(s):  
W. Dansgaard ◽  
S. J. Johnsen

A flow model is described for the Camp Century area in Greenland. The horizontal velocity profile along the core is assumed to be uniform from the surface down to y = 400 m above the bottom. Below this level, the horizontal velocity v x , is assumed to decrease proportionally to y. Furthermore, at a given y, v x is assumed to be proportional to the distance x from the ice divide. The resulting vertical strain-rate under steady-state conditions gives the age of the ice as a function of y. The flow model has explained the measured temperature profile, and the time scale has been verified by comparison between observed stable isotope variations and past climatic changes (at least 70 000 years back in time) estimated by other methods.


1988 ◽  
Vol 10 ◽  
pp. 43-47
Author(s):  
W. Graf ◽  
O. Reinwarth ◽  
H. Moser ◽  
W. Stichler

A 100 m ice core from the Ronne Ice Shelf, drilled during the 1983-84 field season, was dated by isotopic stratigraphy, using the well-known seasonal variation in the 18O content in firn and ice; the layers at a depth of 89 m are probably 400 years old. Layer thicknesses deduced from the 18O profile indicate short-term variations of the snow-accumulation rate over the last 400 years. The area of deposition of the material recovered with the core is estimated by a two-dimensional flow model and by the 18O content of the core, which decreases from –27.5‰ in the upper part of the core to –32.0‰ at 89 m depth.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 363
Author(s):  
George Duffy ◽  
Fraser King ◽  
Ralf Bennartz ◽  
Christopher G. Fletcher

CloudSat is often the only measurement of snowfall rate available at high latitudes, making it a valuable tool for understanding snow climatology. The capability of CloudSat to provide information on seasonal and subseasonal time scales, however, has yet to be explored. In this study, we use subsampled reanalysis estimates to predict the uncertainties of CloudSat snow water equivalent (SWE) accumulation measurements at various space and time resolutions. An idealized/simulated subsampling model predicts that CloudSat may provide seasonal SWE estimates with median percent errors below 50% at spatial scales as small as 2° × 2°. By converting these predictions to percent differences, we can evaluate CloudSat snowfall accumulations against a blend of gridded SWE measurements during frozen time periods. Our predictions are in good agreement with results. The 25th, 50th, and 75th percentiles of the percent differences between the two measurements all match predicted values within eight percentage points. We interpret these results to suggest that CloudSat snowfall estimates are in sufficient agreement with other, thoroughly vetted, gridded SWE products. This implies that CloudSat may provide useful estimates of snow accumulation over remote regions within seasonal time scales.


2007 ◽  
Vol 3 (3) ◽  
pp. 475-484 ◽  
Author(s):  
U. Ruth ◽  
J.-M. Barnola ◽  
J. Beer ◽  
M. Bigler ◽  
T. Blunier ◽  
...  

Abstract. A chronology called EDML1 has been developed for the EPICA ice core from Dronning Maud Land (EDML). EDML1 is closely interlinked with EDC3, the new chronology for the EPICA ice core from Dome-C (EDC) through a stratigraphic match between EDML and EDC that consists of 322 volcanic match points over the last 128 ka. The EDC3 chronology comprises a glaciological model at EDC, which is constrained and later selectively tuned using primary dating information from EDC as well as from EDML, the latter being transferred using the tight stratigraphic link between the two cores. Finally, EDML1 was built by exporting EDC3 to EDML. For ages younger than 41 ka BP the new synchronized time scale EDML1/EDC3 is based on dated volcanic events and on a match to the Greenlandic ice core chronology GICC05 via 10Be and methane. The internal consistency between EDML1 and EDC3 is estimated to be typically ~6 years and always less than 450 years over the last 128 ka (always less than 130 years over the last 60 ka), which reflects an unprecedented synchrony of time scales. EDML1 ends at 150 ka BP (2417 m depth) because the match between EDML and EDC becomes ambiguous further down. This hints at a complex ice flow history for the deepest 350 m of the EDML ice core.


1972 ◽  
Vol 109 (1) ◽  
pp. 17-24 ◽  
Author(s):  
N. A. Mörner

SummaryThe 18 curve from the 1390 m long ice core from Camp Century, Greenland, shows climatic changes that are easily correlated with known glacial and non-glacial events of North America and north Europe and are thus indirectly dated. With a known chronology, the glacial dynamic changes of the Greenland Ice Sheet can be calculated for the last 125,000 years. It is concluded that the dynamics of the Greenland Ice Sheet have changed drastically during this period and that these changes are directly related to major changes of climate and extension of the Wisconsin and Weichselian glaciations. Logarithmic time scales earlier applied to this curve must therefore be incorrect.


1988 ◽  
Vol 10 ◽  
pp. 188-192 ◽  
Author(s):  
Okitsugu Watanabe ◽  
Yoshiyuki Fujii ◽  
Kazuhide Satow

Recently, a 700 m long ice core was drilled at Mizuho Station (2230 m a.s.1.), 270 km south-east of Syowa Station and situated in a typical katabatic-slope region. In order to obtain basic knowledge for dating the core and for interpreting climatic change and depositional environment change along the core, a study of the regional characteristics of the snow-deposition regime on Mizuho plateau has started. Surface-firn cores 10–30 m deep and snow-stake data obtained along the traverse routes on Mizuho plateau since 1970 were analyzed. The general trend of annual snow accumulation and the regional characteristics of the δ18O profile of snow cover were obtained.


2019 ◽  
Vol 15 (2) ◽  
pp. 751-779 ◽  
Author(s):  
Mai Winstrup ◽  
Paul Vallelonga ◽  
Helle A. Kjær ◽  
Tyler J. Fudge ◽  
James E. Lee ◽  
...  

Abstract. We present a 2700-year annually resolved chronology and snow accumulation history for the Roosevelt Island Climate Evolution (RICE) ice core, Ross Ice Shelf, West Antarctica. The core adds information on past accumulation changes in an otherwise poorly constrained sector of Antarctica. The timescale was constructed by identifying annual cycles in high-resolution impurity records, and it constitutes the top part of the Roosevelt Island Ice Core Chronology 2017 (RICE17). Validation by volcanic and methane matching to the WD2014 chronology from the WAIS Divide ice core shows that the two timescales are in excellent agreement. In a companion paper, gas matching to WAIS Divide is used to extend the timescale for the deeper part of the core in which annual layers cannot be identified. Based on the annually resolved timescale, we produced a record of past snow accumulation at Roosevelt Island. The accumulation history shows that Roosevelt Island experienced slightly increasing accumulation rates between 700 BCE and 1300 CE, with an average accumulation of 0.25±0.02 m water equivalent (w.e.) per year. Since 1300 CE, trends in the accumulation rate have been consistently negative, with an acceleration in the rate of decline after the mid-17th century. The current accumulation rate at Roosevelt Island is 0.210±0.002 m w.e. yr−1 (average since 1965 CE, ±2σ), and it is rapidly declining with a trend corresponding to 0.8 mm yr−2. The decline observed since the mid-1960s is 8 times faster than the long-term decreasing trend taking place over the previous centuries, with decadal mean accumulation rates consistently being below average. Previous research has shown a strong link between Roosevelt Island accumulation rates and the location and intensity of the Amundsen Sea Low, which has a significant impact on regional sea-ice extent. The decrease in accumulation rates at Roosevelt Island may therefore be explained in terms of a recent strengthening of the ASL and the expansion of sea ice in the eastern Ross Sea. The start of the rapid decrease in RICE accumulation rates observed in 1965 CE may thus mark the onset of significant increases in regional sea-ice extent.


Sign in / Sign up

Export Citation Format

Share Document