scholarly journals Little ice age advance and retreat of Glaciar Jorge Montt, Chilean Patagonia, recorded in maps, air photographs and dendrochronology

2011 ◽  
Vol 7 (5) ◽  
pp. 3131-3164 ◽  
Author(s):  
A. Rivera ◽  
M. Koppes ◽  
C. Bravo ◽  
J. C. Aravena

Abstract. Glaciar Jorge Montt (48°20' S/73°30' W), one of the main tidewater glaciers of the Southern Patagonian Icefield (SPI), has experienced the fastest frontal retreat observed in Patagonia during the past century, with a recession of 19.5 km between 1898 and 2011. This record retreat uncovered trees overridden during the Little Ice Age (LIA) advance of the glacier. Samples of these trees were dated using radiocarbon methods, yielding burial ages between 460 and 250 cal yr BP. The dendrochronology and maps indicate that Glaciar Jorge Montt was at its present position before the beginning of the LIA, in concert with several other glaciers in Southern Patagonia, and reached its maximum advance position between 1650 and 1750 AD. The post-LIA retreat is most likely triggered by climatically induced changes during the 20th century, however, Glaciar Jorge Montt has responded more dramatically than its neighbours. The retreat of Jorge Montt opened a new fjord 19.5 km long, and up to 391 m deep, with a varied bathymetry well correlated with glacier retreat rates, suggesting that dynamic responses of the glacier are at least partially connected to near buoyancy conditions at the ice front, resulting in high calving fluxes, accelerating thinning rates and rapid ice velocities.

2012 ◽  
Vol 8 (2) ◽  
pp. 403-414 ◽  
Author(s):  
A. Rivera ◽  
M. Koppes ◽  
C. Bravo ◽  
J. C. Aravena

Abstract. Glaciar Jorge Montt (48°20' S/73°30' W), one of the main tidewater glaciers of the Southern Patagonian Icefield (SPI), has experienced the greatest terminal retreat observed in Patagonia during the past century, with a recession of 19.5 km between 1898 and 2011. This retreat has revealed trees laying subglacially until 2003. These trees were dated using radiocarbon, yielding burial ages between 460 and 250 cal yrs BP. The presence of old growth forest during those dates indicates that Glaciar Jorge Montt was upvalley of its present position before the commonly recognized Little Ice Age (LIA) period in Patagonia. The post-LIA retreat was most likely triggered by climatically induced changes during the 20th century; however, Glaciar Jorge Montt has responded more dramatically than its neighbours. The retreat of Jorge Montt opened a 19.5 km long fjord since 1898, which reaches depths in excess of 390 m. The bathymetry is well correlated with glacier retreat rates, suggesting that dynamic responses of the glacier are at least partially connected to near buoyancy conditions at the ice front, resulting in high calving fluxes, accelerating thinning rates and rapid ice velocities.


1990 ◽  
Vol 14 ◽  
pp. 319-322 ◽  
Author(s):  
Gregory C. Wiles ◽  
Parker E. Calkin

A preliminary late-Holocene glacial chronology from the west flank of the southern Kenai Mountains, Alaska, is characterized by two major episodes of advance. Outlet glaciers of both the Harding Icefield and the Grewingk-Yalik ice complex were expanding across their present positions at 545 A.D. and again during the Little Ice Age, about 1500 A.D. The earliest of these Neoglacial advances is dated by radiocarbon ages from the outer rings of tree trunks rooted near the margins of Grewingk and Dinglestadt glaciers. Subsequently, ice margins retreated some distance behind their present positions allowing marked soil development before the last readvance through mature forest. Wood preserved in lateral moraines at Grewingk Glacier and from an uprooted stump at Tustemena Glacier date this later ice advance. Tree-ring ages, correlated with lichen diameters, suggest that this last advance was widespread and culminated in its Neoglacial maximum about 1800 A.D.. Since this time, glacier retreat has dominated in the area, punctuated by at least two pauses. Historical accounts and photographs document a mean rate of retreat of 27 m a−1 for the past century with partial control exerted by calving of ice margins into proglacial lakes.


The Holocene ◽  
2019 ◽  
Vol 30 (3) ◽  
pp. 389-401 ◽  
Author(s):  
Julian A Dowdeswell ◽  
Dag Ottesen ◽  
Valerie K Bellec

Climate warming in Svalbard since the end of the ‘Little Ice Age’ early in the 20th century has reduced glacier extent in the archipelago. Previous attempts to reconstruct ‘Little Ice Age’ glacier limits have encountered problems in specifying the area of tidewater glacier advances because it is difficult to estimate the past positions of their marine termini. Multibeam echo-sounding data are needed to map past glacier extent offshore, especially in open-marine settings where subaerial lateral moraines cannot be used due to the absence of fjord walls. We use the submarine glacial landform record to measure the recent limits of advance of over 30 marine-terminating northeastern Svalbard glaciers and ice caps. Our results demonstrate that previous work has underestimated the ice-covered area relative to today by about 40% for northeastern Svalbard (excluding southeast Austfonna) because marine-geophysical evidence in the form of submarine terminal moraines was not included. We show that the recent ice extent was 1753 km2 larger than today over our full area of multibeam data coverage; about 5% of the total modern ice cover of Svalbard. It has often been assumed that moraine ridges located within a few kilometres of modern ice fronts in Svalbard represent either a ‘Little Ice Age’ maximum or relate to surge activity over the past century or so. In the marine environment of northeastern Svalbard, this timing can often be confirmed by reference to early historical maps and aerial photographs. Assemblages of submarine glacial landforms inshore of recently deposited terminal moraines suggest whether a recent advance may be a result of surging or ‘Little Ice Age’ climatic cooling relative to today. However, older terminal moraines do exist in the archipelago, as shown by radiocarbon and 10Be dating of Holocene moraine ridges.


1990 ◽  
Vol 14 ◽  
pp. 319-322 ◽  
Author(s):  
Gregory C. Wiles ◽  
Parker E. Calkin

A preliminary late-Holocene glacial chronology from the west flank of the southern Kenai Mountains, Alaska, is characterized by two major episodes of advance. Outlet glaciers of both the Harding Icefield and the Grewingk-Yalik ice complex were expanding across their present positions at 545 A.D. and again during the Little Ice Age, about 1500 A.D. The earliest of these Neoglacial advances is dated by radiocarbon ages from the outer rings of tree trunks rooted near the margins of Grewingk and Dinglestadt glaciers. Subsequently, ice margins retreated some distance behind their present positions allowing marked soil development before the last readvance through mature forest. Wood preserved in lateral moraines at Grewingk Glacier and from an uprooted stump at Tustemena Glacier date this later ice advance. Tree-ring ages, correlated with lichen diameters, suggest that this last advance was widespread and culminated in its Neoglacial maximum about 1800 A.D.. Since this time, glacier retreat has dominated in the area, punctuated by at least two pauses. Historical accounts and photographs document a mean rate of retreat of 27 m a−1 for the past century with partial control exerted by calving of ice margins into proglacial lakes.


2007 ◽  
Vol 44 (9) ◽  
pp. 1215-1233 ◽  
Author(s):  
Johannes Koch ◽  
John J Clague ◽  
Gerald D Osborn

The Little Ice Age glacier history in Garibaldi Provincial Park (southern Coast Mountains, British Columbia) was reconstructed using geomorphic mapping, radiocarbon ages on fossil wood in glacier forefields, dendrochronology, and lichenometry. The Little Ice Age began in the 11th century. Glaciers reached their first maximum of the past millennium in the 12th century. They were only slightly more extensive than today in the 13th century, but advanced at least twice in the 14th and 15th centuries to near their maximum Little Ice Age positions. Glaciers probably fluctuated around these advanced positions from the 15th century to the beginning of the 18th century. They achieved their greatest extent between A.D. 1690 and 1720. Moraines were deposited at positions beyond present-day ice limits throughout the 19th and early 20th centuries. Glacier fluctuations appear to be synchronous throughout Garibaldi Park. This chronology agrees well with similar records from other mountain ranges and with reconstructed Northern Hemisphere temperature series, indicating global forcing of glacier fluctuations in the past millennium. It also corresponds with sunspot minima, indicating that solar irradiance plays an important role in late Holocene climate change.


2008 ◽  
Vol 32 (1) ◽  
pp. 3-29 ◽  
Author(s):  
Stanley W. Trimble

Historical data and artifacts, as commonly used in historical geography, can provide powerful tools for dating geomorphological processes over the past century or more and applications can range from months to millennia. Investigations in geomorphology and environmental management can be greatly enhanced by the use of historical techniques. The approach is useful for tracing human-induced changes as well as for those occurring naturally. Several primary techniques are introduced in this essay.


The Holocene ◽  
2019 ◽  
Vol 30 (2) ◽  
pp. 289-299
Author(s):  
Tingwei Zhang ◽  
Xiaoqiang Yang ◽  
Qiong Chen ◽  
Jaime L Toney ◽  
Qixian Zhou ◽  
...  

A number of archives that span the past ~2000 years suggest that recent variability in hydroclimatic conditions that are influenced by the Asian monsoon in China are unusual in the longer term context. However, the lack of high-resolution precipitation records over this period hampered our ability to characterize and constrain the forcing mechanism(s) of the recent humidity variations. Here, we present the ratio of hematite to goethite (Hm/Gt) derived from the semiquantitative evaluation of the diffuse reflectance spectroscopic analysis as a reliable and effective precipitation proxy to reconstruct the humidity variations during the past 1400 years deduced from Tengchongqinghai Lake sediments, southwestern China. Hm/Gt varied synchronously with variations of Chinese temperature reconstructed from the historical documents and sunspot activity index over the past 1400 years. Critical periodicities of ~450 and ~250 years show that solar activity is the dominant control on precipitation change on centennial scales. However, the relationship determined from Hm/Gt in this study contradicts the stalagmite δ18O interpretations from different regions of China, which exhibit a more complex precipitation pattern that is influenced by the strength of westerly jet in addition to the Asian monsoon. The increased westerly jet during the ‘Little Ice Age’ (LIA) caused a humid climate in southern China and dry conditions in northern and western China.


2010 ◽  
Vol 73 (1) ◽  
pp. 96-106 ◽  
Author(s):  
M.H. Masiokas ◽  
B.H. Luckman ◽  
R. Villalba ◽  
A. Ripalta ◽  
J. Rabassa

Little Ice Age (LIA) fluctuations of Glaciar R"o Manso, north Patagonian Andes, Argentina are studied using information from previous work and dendrogeomorphological analyses of living and subfossil wood. The most extensive LIA expansion occurred between the late 1700s and the 1830"1840s. Except for a massive older frontal moraine system apparently predating ca. 2240 14C yr BP and a small section of a south lateral moraine ridge that is at least 300 yr old, the early nineteenth century advance overrode surficial evidence of any earlier LIA glacier events. Over the past 150 yr the gently sloping, heavily debris-covered lower glacier tongue has thinned significantly, but several short periods of readvance or stasis have been identified and tree-ring dated to the mid-1870s, 1890s, 1900s, 1920s, 1950s, and the mid-1970s. Ice mass loss has increased in recent years due to calving into a rapidly growing proglacial lake. The neighboring debris-free and land-based Glaciar Fr"as has also retreated markedly in recent years but shows substantial differences in the timing of the peak LIA advance (early 1600s). This indicates that site-specific factors can have a significant impact on the resulting glacier records and should thus be considered carefully in the development and assessment of regional glacier chronologies.


The Holocene ◽  
2012 ◽  
Vol 22 (12) ◽  
pp. 1405-1412 ◽  
Author(s):  
Claudia Fensterer ◽  
Denis Scholz ◽  
Dirk Hoffmann ◽  
Christoph Spötl ◽  
Jesús M Pajón ◽  
...  

Here we present the first high-resolution δ18O record of a stalagmite from western Cuba. The record reflects precipitation variability in the northwestern Caribbean during the last 1.3 ka and exhibits a correlation to the Atlantic Multidecadal Oscillation (AMO). This suggests a relationship between Caribbean rainfall intensity and North Atlantic sea-surface temperature (SST) anomalies. A potential mechanism for this relationship may be the strength of the Thermohaline Circulation (THC). For a weaker THC, lower SSTs in the North Atlantic possibly lead to a southward shift of the Intertropical Convergence Zone and drier conditions in Cuba. Thus, this Cuban stalagmite records drier conditions during cold phases in the North Atlantic such as the ‘Little Ice Age’. This study contributes to the understanding of teleconnections between North Atlantic SSTs and northern Caribbean climate variability during the past 1.3 ka.


2001 ◽  
Vol 47 (159) ◽  
pp. 579-588 ◽  
Author(s):  
L. A. Rasmussen ◽  
H. Conway

AbstractA simple flux model using twice-daily measurements of wind, humidity and temperature from standard upper-air levels in a distant radiosonde estimated winter balance of South Cascade Glacier, Washington, U.S.A., over 1959–98 with error 0.24 m w.e. Correlation between net and winter balance is strong; the model estimates net balance with error 0.53 m w.e. Over the past 40 years, average net balance of South Cascade Glacier has been strongly negative (−0.46 m w.e.), and it has been shrinking steadily. In comparison, 200 km west-southwest at Blue Glacier, the average balance has been less negative (−0.13 m w.e); that glacier has undergone little change over the 40 years. Balance histories of the two glaciers are positively correlated (r = +0.54), and South Cascade has been more out of balance than Blue, presumably because it is still adjusting to climate change since the Little Ice Age. Recent warming and drying has made the net balance of both glaciers strongly negative since 1976 (−0.84 m w.e. at South Cascade, −0.56 m w.e. at Blue). If South Cascade Glacier were in balance with the 1986–98 climate, it would be about one-quarter of its present area.


Sign in / Sign up

Export Citation Format

Share Document