Modeling the Tropospheric Multiphase Chemistry of Biomass Burning Trace Compounds Using the Chemical Aqueous Phase Radical Mechanism (CAPRAM)

2021 ◽  
Author(s):  
Lin He ◽  
Erik H. Hoffmann ◽  
Andreas Tilgner ◽  
Hartmut Herrmann

<p>Biomass burning (BB) is a significant contributor to air pollution on global, regional and local scale with impacts on air quality, public health and climate. Anhydrosugars and methoxyphenols are key tracers emitted through BB. Once emitted, they can undergo complex multiphase chemistry in the atmosphere contributing to secondary organic aerosol (SOA) formation. However, their chemical multiphase processing is not yet well understood and investigated by models. Thus, the present study aimed at a better understanding of the multiphase chemistry of these BB tracers by detailed model studies with a new developed CAPRAM biomass burning module (CAPRAM-BBM).This module was developed based on the kinetic data from our laboratory measurements at TROPOS and other literature studies. The developed CAPRAM-BBM includes 2991 reactions (9 phase transfers and 2982 aqueous-phase reactions). By coupling with the multiphase chemistry mechanism MCMv3.2/CAPRAM4.0 and the extended CAPRAM aromatics (CAPRAM-AM1.0) and halogen modules (CAPRAM-HM3.0), itis being applied for residential wood burning cases in Europeand wildfire cases in the US. Our model results show that levoglucosan and vanillin are effectively oxidized under cloud conditions. Furthermore, the results demonstrate that the chemistry of BB tracers can affect the budgets of key oxidants such as H<sub>2</sub>O<sub>2</sub>, and contribute to the SOA formation especially by increasing the fraction of brown carbon and substituted organic acids.</p>

2021 ◽  
Author(s):  
Lin He ◽  
Erik Hans Hoffmann ◽  
Andreas Tilgner ◽  
Hartmut Herrmann

<p>Biomass burning (BB) is a significant contributor to air pollution on global, regional and local scale with impacts on air quality, public health and climate. Anhydrosugars (levoglucosan, mannosan and galactocan) and methoxyphenols (guaiacol, creosol, etc.) are important tracer compounds emitted through biomass burning. Once emitted, they can undergo complex multiphase chemistry in the atmosphere contributing to secondary organic aerosol formation. However, their chemical multiphase processing is not yet well understood and investigated by models. Therefore, the present study aimed at a better understanding of the multiphase chemistry of these BB trace species by means of detailed model studies with a new developed detailed chemical CAPRAM biomass burning module (CAPRAM-BB). This module was developed based on the kinetic data from the laser flash photolysis measurements in our lab at TROPOS and other literature studies. The developed CAPRAM-BB module includes 2991 reactions (thereof 9 phase transfers and 2982 aqueous-phase reactions). By coupling with the multiphase chemistry mechanism MCMv3.2/CAPRAM4.0 and the extended CAPRAM aromatics (CAPRAM-AM1.0) and halogen modules (CAPRAM-HM3.0), it is being applied for some residential wood burning cases in Europe and wildfire cases in the US. Our model results show that the BB chemistry could significantly affect the budgets of important atmospheric oxidants such as H<sub>2</sub>O<sub>2</sub> and HONO, and contribute to the SOA formation especially the fraction of brown carbon and substituted organic acids.</p>


2016 ◽  
Vol 113 (42) ◽  
pp. 11776-11781 ◽  
Author(s):  
Erik Hans Hoffmann ◽  
Andreas Tilgner ◽  
Roland Schrödner ◽  
Peter Bräuer ◽  
Ralf Wolke ◽  
...  

Oceans dominate emissions of dimethyl sulfide (DMS), the major natural sulfur source. DMS is important for the formation of non-sea salt sulfate (nss-SO42−) aerosols and secondary particulate matter over oceans and thus, significantly influence global climate. The mechanism of DMS oxidation has accordingly been investigated in several different model studies in the past. However, these studies had restricted oxidation mechanisms that mostly underrepresented important aqueous-phase chemical processes. These neglected but highly effective processes strongly impact direct product yields of DMS oxidation, thereby affecting the climatic influence of aerosols. To address these shortfalls, an extensive multiphase DMS chemistry mechanism, the Chemical Aqueous Phase Radical Mechanism DMS Module 1.0, was developed and used in detailed model investigations of multiphase DMS chemistry in the marine boundary layer. The performed model studies confirmed the importance of aqueous-phase chemistry for the fate of DMS and its oxidation products. Aqueous-phase processes significantly reduce the yield of sulfur dioxide and increase that of methyl sulfonic acid (MSA), which is needed to close the gap between modeled and measured MSA concentrations. Finally, the simulations imply that multiphase DMS oxidation produces equal amounts of MSA and sulfate, a result that has significant implications for nss-SO42− aerosol formation, cloud condensation nuclei concentration, and cloud albedo over oceans. Our findings show the deficiencies of parameterizations currently used in higher-scale models, which only treat gas-phase chemistry. Overall, this study shows that treatment of DMS chemistry in both gas and aqueous phases is essential to improve the accuracy of model predictions.


2018 ◽  
Vol 20 (16) ◽  
pp. 10960-10977 ◽  
Author(s):  
Erik H. Hoffmann ◽  
Andreas Tilgner ◽  
Ralf Wolke ◽  
Olaf Böge ◽  
Arno Walter ◽  
...  

An aqueous-phase chemistry mechanism for the oxidation of aromatic compounds in the atmosphere is developed based on available kinetic data. Detailed model studies successfully describe the oxidation and functionalization of monoaromatic compounds in the atmosphere.


2011 ◽  
Vol 11 (4) ◽  
pp. 11995-12037 ◽  
Author(s):  
C. J. Hennigan ◽  
M. A. Miracolo ◽  
G. J. Engelhart ◽  
A. A. May ◽  
A. A. Presto ◽  
...  

Abstract. Smog chamber experiments were conducted to investigate chemical and physical transformations of organic aerosol (OA) during photo-oxidation of open biomass burning emissions. The experiments were carried out at the US Forest Service's Fire Science Laboratory as part of the third Fire Lab at Missoula Experiment (FLAME III). We investigated 12 different fuels commonly burned in North American wildfires. The experiments feature atmospheric and plume aerosol and oxidant concentrations; aging times ranged from 3–4.5 h. OA production, expressed as a mass enhancement ratio (ratio of OA to primary OA (POA) mass), was highly variable. OA mass enhancement ratios ranged from 2.9 in experiments where secondary OA (SOA) production nearly tripled the POA concentration, to 0.7 in experiments where photo-oxidation resulted in a 30% loss of the OA mass. The campaign-average OA mass enhancement ratio was 1.7 ± 0.7 (mean ± 1 σ); therefore, on average, there was substantial SOA production. In every experiment, the OA was chemically transformed. Even in experiments with net loss of OA mass, the OA became increasingly oxygenated and less volatile with aging, indicating that photo-oxidation transformed the POA emissions. Levoglucosan concentrations were also substantially reduced with photo-oxidation. The transformations of POA were extensive; using levoglucosan as a tracer for POA, unreacted POA only contributed 17% of the campaign-average OA mass after 3.5 h of exposure to typical atmospheric hydroxyl radical (OH) levels. Heterogeneous reactions with OH could account for less than half of this transformation, implying that the coupled gas-particle partitioning and reaction of semi-volatile vapors is an important and potentially dominant mechanism for POA processing. Overall, the results illustrate that biomass burning emissions are subject to extensive chemical processing in the atmosphere, and the timescale for these transformations is rapid.


2011 ◽  
Vol 11 (23) ◽  
pp. 12197-12216 ◽  
Author(s):  
I. R. Burling ◽  
R. J. Yokelson ◽  
S. K. Akagi ◽  
S. P. Urbanski ◽  
C. E. Wold ◽  
...  

Abstract. We have measured emission factors for 19 trace gas species and particulate matter (PM2.5) from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as conifer forest understory in the southeastern US and Sierra Nevada mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass burning to date and the only published emission factors for temperate oak savanna fuels. This study helps to close the gap in emissions data available for temperate zone fires relative to tropical biomass burning. We present the first field measurements of the biomass burning emissions of glycolaldehyde, a possible precursor for aqueous phase secondary organic aerosol formation. We also measured the emissions of phenol, another aqueous phase secondary organic aerosol precursor. Our data confirm previous observations that urban deposition can impact the NOx emission factors and thus subsequent plume chemistry. For two fires, we measured both the emissions in the convective smoke plume from our airborne platform and the unlofted residual smoldering combustion emissions with our ground-based platform. The smoke from residual smoldering combustion was characterized by emission factors for hydrocarbon and oxygenated organic species that were up to ten times higher than in the lofted plume, including high 1,3-butadiene and isoprene concentrations which were not observed in the lofted plume. This should be considered in modeling the air quality impacts for smoke that disperses at ground level. We also show that the often ignored unlofted emissions can significantly impact estimates of total emissions. Preliminary evidence suggests large emissions of monoterpenes in the residual smoldering smoke. These data should lead to an improved capacity to model the impacts of biomass burning in similar temperate ecosystems.


2021 ◽  
Vol 21 (22) ◽  
pp. 17115-17132
Author(s):  
Ksakousti Skyllakou ◽  
Pablo Garcia Rivera ◽  
Brian Dinkelacker ◽  
Eleni Karnezi ◽  
Ioannis Kioutsioukis ◽  
...  

Abstract. Significant reductions in emissions of SO2, NOx, volatile organic compounds (VOCs), and primary particulate matter (PM) took place in the US from 1990 to 2010. We evaluate here our understanding of the links between these emissions changes and corresponding changes in concentrations and health outcomes using a chemical transport model, the Particulate Matter Comprehensive Air Quality Model with Extensions (PMCAMx), for 1990, 2001, and 2010. The use of the Particle Source Apportionment Algorithm (PSAT) allows us to link the concentration reductions to the sources of the corresponding primary and secondary PM. The reductions in SO2 emissions (64 %, mainly from electric-generating units) during these 20 years have dominated the reductions in PM2.5, leading to a 45 % reduction in sulfate levels. The predicted sulfate reductions are in excellent agreement with the available measurements. Also, the reductions in elemental carbon (EC) emissions (mainly from transportation) have led to a 30 % reduction in EC concentrations. The most important source of organic aerosol (OA) through the years according to PMCAMx is biomass burning, followed by biogenic secondary organic aerosol (SOA). OA from on-road transport has been reduced by more than a factor of 3. On the other hand, changes in biomass burning OA and biogenic SOA have been modest. In 1990, about half of the US population was exposed to annual average PM2.5 concentrations above 20 µg m−3, but by 2010 this fraction had dropped to practically zero. The predicted changes in concentrations are evaluated against the observed changes for 1990, 2001, and 2010 in order to understand whether the model represents reasonably well the corresponding processes caused by the changes in emissions.


2011 ◽  
Vol 11 (6) ◽  
pp. 18677-18727 ◽  
Author(s):  
I. R. Burling ◽  
R. J. Yokelson ◽  
S. K. Akagi ◽  
S. P. Urbanski ◽  
C. E. Wold ◽  
...  

Abstract. We measured the emission factors for 19 trace gas species and particulate matter (PM2.5) from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as conifer forest understory in the southeastern US and Sierra Nevada mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass burning to date and the only published emission factors for temperate oak savanna fuels. This study helps close the gap in emissions data available for temperate zone fires relative to tropical biomass burning. We present the first field measurements of the biomass burning emissions of glycolaldehyde, a possible precursor for aqueous phase secondary organic aerosol formation. We also measured the emissions of phenol, another aqueous phase secondary organic aerosol precursor. Our data confirm previous observations that urban deposition can impact the NOx emission factors and thus subsequent plume chemistry. For two fires, we measured both the emissions in the convective smoke plume from our airborne platform and the unlofted residual smoldering combustion emissions with our ground-based platform. The smoke from residual smoldering combustion was characterized by emission factors for hydrocarbon and oxygenated organic species that were up to ten times higher than in the lofted plume, including high 1,3-butadiene and isoprene concentrations which were not observed in the lofted plume. This should be considered in modeling the air quality impacts of smoke that disperses at ground level. We also show that the often ignored unlofted emissions can significantly impact estimates of total emissions. Preliminary evidence suggests large emissions of monoterpenes in the residual smoldering smoke. These data should lead to an improved capacity to model the impacts of biomass burning in similar temperate ecosystems.


2018 ◽  
Vol 18 (21) ◽  
pp. 16099-16119 ◽  
Author(s):  
Barbara Ervens ◽  
Armin Sorooshian ◽  
Abdulmonam M. Aldhaif ◽  
Taylor Shingler ◽  
Ewan Crosbie ◽  
...  

Abstract. The formation of sulfate and secondary organic aerosol mass in the aqueous phase (aqSOA) of cloud and fog droplets can significantly contribute to ambient aerosol mass. While tracer compounds give evidence that aqueous-phase processing occurred, they do not reveal the extent to which particle properties have been modified in terms of mass, chemical composition, hygroscopicity, and oxidation state. We analyze data from several field experiments and model studies for six air mass types (urban, biogenic, marine, wild fire biomass burning, agricultural biomass burning, and background air) using aerosol size and composition measurements for particles 13–850 nm in diameter. We focus on the trends of changes in mass, hygroscopicity parameter κ, and oxygen-to-carbon (O ∕ C) ratio due to chemical cloud processing. We find that the modification of these parameters upon cloud processing is most evident in urban, marine, and biogenic air masses, i.e., air masses that are more polluted than very clean air (background air) but cleaner than heavily polluted plumes as encountered during biomass burning. Based on these trends, we suggest that the mass ratio (Rtot) of the potential aerosol sulfate and aqSOA mass to the initial aerosol mass can be used to predict whether chemical cloud processing will be detectable. Scenarios in which this ratio exceeds Rtot∼0.5 are the most likely ones in which clouds can significantly change aerosol parameters. It should be noted that the absolute value of Rtot depends on the considered size range of particles. Rtot is dominated by the addition of sulfate (Rsulf) in all scenarios due to the more efficient conversion of SO2 to sulfate compared to aqSOA formation from organic gases. As the formation processes of aqSOA are still poorly understood, the estimate of RaqSOA is likely associated with large uncertainties. Comparison to Rtot values as calculated for ambient data at different locations validates the applicability of the concept to predict a chemical cloud-processing signature in selected air masses.


2011 ◽  
Vol 11 (15) ◽  
pp. 7669-7686 ◽  
Author(s):  
C. J. Hennigan ◽  
M. A. Miracolo ◽  
G. J. Engelhart ◽  
A. A. May ◽  
A. A. Presto ◽  
...  

Abstract. Smog chamber experiments were conducted to investigate the chemical and physical transformations of organic aerosol (OA) during photo-oxidation of open biomass burning emissions. The experiments were carried out at the US Forest Service Fire Science Laboratory as part of the third Fire Lab at Missoula Experiment (FLAME III). We investigated emissions from 12 different fuels commonly burned in North American wildfires. The experiments feature atmospheric and plume aerosol and oxidant concentrations; aging times ranged from 3 to 4.5 h. OA production, expressed as a mass enhancement ratio (ratio of OA to primary OA (POA) mass), was highly variable. OA mass enhancement ratios ranged from 2.9 in experiments where secondary OA (SOA) production nearly tripled the POA concentration to 0.7 in experiments where photo-oxidation resulted in a 30 % loss of the OA mass. The campaign-average OA mass enhancement ratio was 1.7 ± 0.7 (mean ± 1σ); therefore, on average, there was substantial SOA production. In every experiment, the OA was chemically transformed. Even in experiments with net loss of OA mass, the OA became increasingly oxygenated and less volatile with aging, indicating that photo-oxidation transformed the POA emissions. Levoglucosan concentrations were also substantially reduced with photo-oxidation. The transformations of POA were extensive; using levoglucosan as a tracer for POA, unreacted POA only contributed 17 % of the campaign-average OA mass after 3.5 h of exposure to typical atmospheric hydroxyl radical (OH) levels. Heterogeneous reactions with OH could account for less than half of this transformation, implying that the coupled gas-particle partitioning and reaction of semi-volatile vapors is an important and potentially dominant mechanism for POA processing. Overall, the results illustrate that biomass burning emissions are subject to extensive chemical processing in the atmosphere, and the timescale for these transformations is rapid.


2014 ◽  
Vol 14 (24) ◽  
pp. 13801-13816 ◽  
Author(s):  
L. Yu ◽  
J. Smith ◽  
A. Laskin ◽  
C. Anastasio ◽  
J. Laskin ◽  
...  

Abstract. Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol (compound with formula C6H5OH)), guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol) with two major aqueous-phase oxidants – the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (· OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenated molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85–1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than · OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenolic compound has reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV–visible region, suggesting that aqueous-phase reactions of phenols may contribute to formation of secondary brown carbon in the atmosphere, especially in regions influenced by biomass burning.


Sign in / Sign up

Export Citation Format

Share Document