scholarly journals The impact of Ensemble-Based Assimilation of Thermodynamic Lidar Profiles on Forecasts of the Pre-Convective Environment and Convection Initiation of Heavy Precipitation Events over the Mediterranean region: The German contribution to WaLiNeAs

2021 ◽  
Author(s):  
Rohith Muraleedharan Thundathil ◽  
Thomas Schwitalla ◽  
Andreas Behrendt ◽  
Diego Lange ◽  
Cyrille Flamant ◽  
...  

<p>Probabilistic quantitative precipitation forecasting (PrQPF) is a challenging field of meteorology, which is fundamental for the prediction and quantification of extreme precipitation events. With advanced remote-sensing instruments such as lidar systems, it is possible to acquire the high-resolution temporal and spatial dynamical and thermodynamic data for input to the numerical weather prediction (NWP) models through data assimilation (DA) techniques. During the fall, the Mediterranean region is often stricken by heavy precipitation events (HPEs), resulting in a sudden rise of water levels in the rivers and flash floods. Severe damage to life and property arises during these extreme precipitation events every year. A unique and innovative French initiative project, called the Water Vapor Lidar Network assimilation (WaLiNeAs), will start a measurement campaign in early September 2022, deploying a network of autonomous water vapor lidars from research groups of France, Germany, and Italy across the Western Mediterranean. The project aims to implement an integrated prediction tool to enhance the forecast of HPEs in southern France, primarily demonstrating the benefit of assimilating vertically resolved water vapor data in the new version of the French operational AROME NWP system. The Atmospheric Raman Temperature and Humidity Sounder (ARTHUS, (Lange et al. 2019)), from the University of Hohenheim (UHOH), will operate in synergy with other lidar systems. The data collected from the measurement campaign, water vapor and temperature, will be assimilated in the Weather Research and Forecasting (WRF) model system at the Institute of Physics and Meteorology (IPM), UHOH. A thermodynamic lidar operator developed by some of us (Thundathil et al. 2020) will be used to assimilate lidar temperature and water vapor mixing ratio independently. The operator avoids undesirable cross sensitivities to temperature enabling maximum moisture information of the observation to be propagated into the model. An advanced hybrid three-dimensional Variational - Ensemble Transform Kalman Filter (3DVAR-ETKF) DA system with 50 ensemble members, on a convection-permitting resolution of 1.5 km, will be set up for the research study. For the prediction and quantification of the HPE event, the assimilation will be performed in a rapid update cycle mode every 15 minutes before its occurrence. A prototype of the DA system with ten ensemble members and a one-hour rapid update cycle was already developed at IPM (Thundathil et al., 2021). In this case, the impact from a single ground-based lidar spreads spatially for a radius of 100 km. Apart from the improvement in the analyses, the planetary boundary layer height (PBLH) forecast impact persisted 7 hours into forecast time compared with respect to independent ceilometer observations. The results show a promising initiative for future operational lidar network assimilation. We will present the outline and DA setup of the study, highlighting results from our previous lidar DA research.</p>

2020 ◽  
Author(s):  
Sunil Subba ◽  
Yaoming Ma ◽  
Weiqiang Ma

<p>In recent days there have been discussions regarding the impact of climate change and its vagaries of the weather, particularly concerning extreme events. Nepal, being a mountainous country, is more susceptible to precipitation extreme events and related hazards, which hinder the socioeconomic<br>development of the nation. In this regard, this study aimed to address this phenomenon for one of the most naturally and socioeconomically important regions of Nepal, namely, Eastern Nepal. The data were collected for the period of 1997 to 2016. The interdecadal comparison for two periods<br>(1997–2006 and 2007–2016) was maintained for the calculation of extreme precipitation indices as per recommended by Expert Team on Climate Change Detection and Indices. Linear trends were calculated by using Mann‐Kendall and Sen's Slope estimator. The average annual precipitation was found to be decreasing at an alarming rate of −20 mm/year in the last two decades' tenure. In case of extreme precipitation events, consecutive dry days, one of the frequency indices, showed a solo increase in its trend (mostly significant). Meanwhile, all the intensity indices of extreme precipitation showed decreasing trends (mostly insignificant). Thus, it can be concluded that Eastern Nepal has witnessed some significant drier days in the last two decades, as the events of heavy, very heavy, extremely heavy precipitation events, and annual wet day precipitation (PRCPTOT) were found to be decreasing. The same phenomena were also seen in the Tropical Rainfall Measuring Mission 3B42 V7 satellite precipitation product for whole Nepal.</p>


2014 ◽  
Vol 121 (3-4) ◽  
pp. 499-515 ◽  
Author(s):  
Simon O. Krichak ◽  
Joseph Barkan ◽  
Joseph S. Breitgand ◽  
Silvio Gualdi ◽  
Steven B. Feldstein

2015 ◽  
Vol 3 (6) ◽  
pp. 3983-4005 ◽  
Author(s):  
S. O. Krichak ◽  
S. B. Feldstein ◽  
P. Alpert ◽  
S. Gualdi ◽  
E. Scoccimarro ◽  
...  

Abstract. Extreme precipitation events in the Mediterranean region during the cool season are strongly affected by the export of moist air from tropical and subtropical areas into the extratropics. The aim of this paper is to present a discussion of the major research efforts on this subject and to formulate a summary of our understanding of this phenomenon, along with its recent past trends from a climate change perspective. The issues addressed are: a discussion of several case studies; the origin of the air moisture and the important role of atmospheric rivers for fueling the events; the mechanism responsible for the intensity of precipitation during the events, and the possible role of global warming in recent past trends in extreme weather events over the Mediterranean region.


2021 ◽  
Author(s):  
Sara Cloux ◽  
Damián Insua-Costa ◽  
Gonzalo Miguez-Macho ◽  
Vicente Perez-Muñuzuri

<div> <p>Extreme precipitation events are atmospheric phenomena causing floods that generate great economic and social losses. The Mediterranean region is characterized by a strong variability in time and space that favors the appearance of this type of phenomena. Therefore, determining the origin of humidity must be done.     </p> </div><div> <p>The UTrack-atmospheric-moisture model [1] is a Lagrangian tool to track atmospheric moisture flows forward in time using ERA-5 reanalysis weather data. The labeled moisture is released into the atmosphere in the form of evaporation. After determine the allocated moisture precipitated at each time, this model allows us to know the percentage of relative humidity that has precipitated for each of the labeled sources.  Here we present a comparison of these results with previous results obtained by other Lagrangian methods. </p> </div><div> <p>[1] Tuinenburg, Obbe A., and Arie Staal. Tracking the global flows of atmospheric moisture and associated uncertainties." Hydrology and Earth System Sciences 24.5 (2020): 2419-2435. </p> </div>


2020 ◽  
Author(s):  
Nikolaos Mastrantonas ◽  
Linus Magnusson ◽  
Florian Pappenberger ◽  
Jörg Matschullat

<p>The Mediterranean region is an area with half a billion population, about 10 percent contribution to the world’s GDP, and locations of global natural, historical and cultural significance. In this context, natural hazards in the area have the potential for severe negative impacts on society, economy, and environment. </p><p>Some of the most frequent and devastating natural hazards that affect the Mediterranean relate to extreme precipitation events causing flash floods and landslides. Thus, given their adverse consequences, it is of immense importance to better understand their statistical characteristics and connection to large-scale atmospheric patterns. Such advances can substantially support the accurate and early identification of these extreme events, improve early warning systems, and contribute to mitigating related risks. </p><p>This work focuses on the characteristics and spatiotemporal variability of extreme precipitation events of large spatial coverage across the Mediterranean region. The study uses the ERA5 dataset, the latest, state of the art, reanalysis dataset from Copernicus/ECMWF. Initially, exploratory analysis is performed to assess the different characteristics at various subdomains within the study area. Furthermore, composite analysis is used to understand the connection of extreme events with large-scale atmospheric patterns. Finally, the Empirical Orthogonal Function (EOF) analysis is implemented to quantify the importance of weather regimes with respect to the frequency of extreme precipitation events. </p><p>Preliminary results indicate that there is a spatial division in the occurrence of identified events. Winter and autumn are the seasons of the highest frequency of extreme precipitation for the east and west Mediterranean respectively. Troughs and cut-off lows in the lower and middle-level troposphere have a strong association with such extreme events, and the effect is modulated by other parameters, such as local orography. Results of this work are in accordance with previous studies in the region and provide information that can be utilized by future research for improving the predictability of such events in the medium- and extended-range forecasts. </p><p>This work is part of the Climate Advanced Forecasting of sub-seasonal Extremes (CAFE) project. The project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 813844.</p>


2021 ◽  
Author(s):  
Nikolaos Mastrantonas ◽  
Linus Magnusson ◽  
Florian Pappenberger ◽  
Jörg Matschullat

<p>The Mediterranean region frequently experiences extreme precipitation events with devastating consequences for the affected societies, economies, and environment. Being able to provide reliable and skillful predictions of such events is crucial for mitigating their adverse impacts and related risks. One important part of the risk mitigation chain is the sub-seasonal predictability of such extremes, with information provided at such timescales supporting a range of actions, as for example warn decision-makers, and preposition materials and equipment.</p><p>This work focuses on the predictability of large-scale atmospheric flow patterns connected to extreme precipitation events in the Mediterranean. Previous research has identified strong connections between localized extremes and large-scale patterns. This is promising to provide useful information at sub-seasonal timescales. For such lead times, the Numerical Weather Prediction models are more skillful in predicting large-scale patterns than localized extremes. Here, we analyze the usefulness of these connections at sub-seasonal timescales by using the ECMWF extended-range forecasts. We aim at quantifying related benefits for the different areas in the Mediterranean region and providing insights that are of interest to the operational community.</p><p>Initial results suggest that the ECMWF forecasts provide skillful information in the predictability of large-scale patterns up to about 15 days lead time.</p><p> </p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.3687c29b370068376801161/sdaolpUECMynit/12UGE&app=m&a=0&c=49e65b5908090e0787f0f7f4f8930219&ct=x&pn=gnp.elif&d=1" alt=""></p><p>Large-scale patterns over the Mediterranean based on anomalies of sea level pressure (color shades) and geopotential at 500 hPa (contours) (Figure adapted from Mastrantonas et al, 2020)</p>


2012 ◽  
Vol 13 (1) ◽  
pp. 47-66 ◽  
Author(s):  
Pavel Ya. Groisman ◽  
Richard W. Knight ◽  
Thomas R. Karl

Abstract In examining intense precipitation over the central United States, the authors consider only days with precipitation when the daily total is above 12.7 mm and focus only on these days and multiday events constructed from such consecutive precipitation days. Analyses show that over the central United States, a statistically significant redistribution in the spectra of intense precipitation days/events during the past decades has occurred. Moderately heavy precipitation events (within a 12.7–25.4 mm day−1 range) became less frequent compared to days and events with precipitation totals above 25.4 mm. During the past 31 yr (compared to the 1948–78 period), significant increases occurred in the frequency of “very heavy” (the daily rain events above 76.2 mm) and extreme precipitation events (defined as daily and multiday rain events with totals above 154.9 mm or 6 in.), with up to 40% increases in the frequency of days and multiday extreme rain events. Tropical cyclones associated with extreme precipitation do not significantly contribute to the changes reported in this study. With time, the internal precipitation structure (e.g., mean and maximum hourly precipitation rates within each preselected range of daily or multiday event totals) did not noticeably change. Several possible causes of observed changes in intense precipitation over the central United States are discussed and/or tested.


2008 ◽  
Vol 21 (1) ◽  
pp. 22-39 ◽  
Author(s):  
Siegfried D. Schubert ◽  
Yehui Chang ◽  
Max J. Suarez ◽  
Philip J. Pegion

Abstract In this study the authors examine the impact of El Niño–Southern Oscillation (ENSO) on precipitation events over the continental United States using 49 winters (1949/50–1997/98) of daily precipitation observations and NCEP–NCAR reanalyses. The results are compared with those from an ensemble of nine atmospheric general circulation model (AGCM) simulations forced with observed SST for the same time period. Empirical orthogonal functions (EOFs) of the daily precipitation fields together with compositing techniques are used to identify and characterize the weather systems that dominate the winter precipitation variability. The time series of the principal components (PCs) associated with the leading EOFs are analyzed using generalized extreme value (GEV) distributions to quantify the impact of ENSO on the intensity of extreme precipitation events. The six leading EOFs of the observations are associated with major winter storm systems and account for more than 50% of the daily precipitation variability along the West Coast and over much of the eastern part of the country. Two of the leading EOFs (designated GC for Gulf Coast and EC for East Coast) together represent cyclones that develop in the Gulf of Mexico and occasionally move and/or redevelop along the East Coast producing large amounts of precipitation over much of the southern and eastern United States. Three of the leading EOFs represent storms that hit different sections of the West Coast (designated SW for Southwest coast, WC for the central West Coast, and NW for northwest coast), while another represents storms that affect the Midwest (designated by MW). The winter maxima of several of the leading PCs are significantly impacted by ENSO such that extreme GC, EC, and SW storms that occur on average only once every 20 years (20-yr storms) would occur on average in half that time under sustained El Niño conditions. In contrast, under La Niña conditions, 20-yr GC and EC storms would occur on average about once in 30 years, while there is little impact of La Niña on the intensity of the SW storms. The leading EOFs from the model simulations and their connections to ENSO are for the most part quite realistic. The model, in particular, does very well in simulating the impact of ENSO on the intensity of EC and GC storms. The main model discrepancies are the lack of SW storms and an overall underestimate of the daily precipitation variance.


Author(s):  
Olivia VanBuskirk ◽  
Paulina Ćwik ◽  
Renee A. McPherson ◽  
Heather Lazrus ◽  
Elinor Martin ◽  
...  

AbstractHeavy precipitation events and their associated flooding can have major impacts on communities and stakeholders. There is a lack of knowledge, however, about how stakeholders make decisions at the sub-seasonal to seasonal (S2S) timescales (i.e., two weeks to three months). To understand how decisions are made and S2S predictions are or can be used, the project team for “Prediction of Rainfall Extremes at Sub-seasonal to Seasonal Periods” (PRES2iP) conducted a two-day workshop in Norman, Oklahoma, during July 2018. The workshop engaged 21 professionals from environmental management and public safety communities across the contiguous United States in activities to understand their needs for S2S predictions of potential extended heavy precipitation events. Discussions and role-playing activities aimed to identify how workshop participants manage uncertainty and define extreme precipitation, the timescales over which they make key decisions, and the types of products they use currently. This collaboration with stakeholders has been an integral part of PRES2iP research and has aimed to foster actionable science. The PRES2iP team is using the information produced from this workshop to inform the development of predictive models for extended heavy precipitation events and to collaboratively design new forecast products with our stakeholders, empowering them to make more-informed decisions about potential extreme precipitation events.


2018 ◽  
Vol 31 (22) ◽  
pp. 9087-9105 ◽  
Author(s):  
Lejiang Yu ◽  
Qinghua Yang ◽  
Timo Vihma ◽  
Svetlana Jagovkina ◽  
Jiping Liu ◽  
...  

Observed daily precipitation data were used to investigate the characteristics of precipitation at Antarctic Progress Station and synoptic patterns associated with extreme precipitation events during the period 2003–16. The annual precipitation, annual number of extreme precipitation events, and amount of precipitation during the extreme events have positive trends. The distribution of precipitation at Progress Station is heavily skewed with a long tail of extreme dry days and a high peak of extreme wet days. The synoptic pattern associated with extreme precipitation events is a dipole structure of negative and positive height anomalies to the west and east of Progress Station, respectively, resulting in water vapor advection to the station. For the first time, we apply self-organizing maps (SOMs) to examine thermodynamic and dynamic perspectives of trends in the frequency of occurrence of Antarctic extreme precipitation events. The changes in thermodynamic (noncirculation) processes explain 80% of the trend, followed by the changes in the interaction between thermodynamic and dynamic processes, which account for nearly 25% of the trend. The changes in dynamic processes make a negative (less than 5%) contribution to the trend. The positive trend in total column water vapor over the Southern Ocean explains the change of thermodynamic term.


Sign in / Sign up

Export Citation Format

Share Document