scholarly journals Features of Extreme Precipitation at Progress Station, Antarctica

2018 ◽  
Vol 31 (22) ◽  
pp. 9087-9105 ◽  
Author(s):  
Lejiang Yu ◽  
Qinghua Yang ◽  
Timo Vihma ◽  
Svetlana Jagovkina ◽  
Jiping Liu ◽  
...  

Observed daily precipitation data were used to investigate the characteristics of precipitation at Antarctic Progress Station and synoptic patterns associated with extreme precipitation events during the period 2003–16. The annual precipitation, annual number of extreme precipitation events, and amount of precipitation during the extreme events have positive trends. The distribution of precipitation at Progress Station is heavily skewed with a long tail of extreme dry days and a high peak of extreme wet days. The synoptic pattern associated with extreme precipitation events is a dipole structure of negative and positive height anomalies to the west and east of Progress Station, respectively, resulting in water vapor advection to the station. For the first time, we apply self-organizing maps (SOMs) to examine thermodynamic and dynamic perspectives of trends in the frequency of occurrence of Antarctic extreme precipitation events. The changes in thermodynamic (noncirculation) processes explain 80% of the trend, followed by the changes in the interaction between thermodynamic and dynamic processes, which account for nearly 25% of the trend. The changes in dynamic processes make a negative (less than 5%) contribution to the trend. The positive trend in total column water vapor over the Southern Ocean explains the change of thermodynamic term.

Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 193 ◽  
Author(s):  
Chaoxing Sun ◽  
Guohe Huang ◽  
Yurui Fan

The unique characteristics of topography, landforms, and climate in the Loess Plateau make it especially important to investigate its extreme precipitation characteristics. Daily precipitation data of Loess Plateau covering a period of 1959–2017 are applied to evaluate the probability features of five precipitation indicators: the amount of extreme heavy precipitation (P95), the days with extreme heavy precipitation, the intensity of extreme heavy precipitation (I95), the continuous dry days, and the annual total precipitation. In addition, the joint risk of different combinations of precipitation indices is quantitatively evaluated based on the copula method. Moreover, the risk and severity of each extreme heavy precipitation factor corresponding to 50-year joint return period are achieved through inverse derivation process. Results show that the precipitation amount and intensity of the Loess Plateau vary greatly in spatial distribution. The annual precipitation in the northwest region may be too concentrated in several rainstorms, which makes the region in a serious drought state for most of the year. At the level of 10-year return period, more than five months with no precipitation events would occur in the Northwest Loess Plateau. While, P95 or I95 events of 100-year level may be encountered in a 50-year return period and in the southeastern region, which means there are foreseeable long-term extreme heavy precipitation events.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 620
Author(s):  
Jin Ding ◽  
Lan Cuo ◽  
Yongxin Zhang ◽  
Cunjie Zhang ◽  
Liqiao Liang ◽  
...  

Based on daily precipitation data from 115 climate stations, seasonal and annual precipitation and their extremes over the Tibetan Plateau and its surroundings (TPS) in 1963–2015 are investigated. There exists a clear southeast-northwest gradient in precipitation and extreme daily precipitation but an opposite pattern for the consecutive dry days (CDDs). The wet southeast is trending dry while the dry center and northwest are trending wet in 1963–2015. Correspondingly, there is a drying tendency over the wet basins in the southeast and a wetting tendency over the dry and semi-dry basins in the center and northwest in summer, which will affect the water resources in the corresponding areas. The increase (decrease) in precipitation tends to correspond to the increase (decrease) in maximum daily precipitation but the decrease (increase) in CDDs. Extreme precipitation events with 20-year, 50-year, 100-year, and 200-year recurrence occurred frequently in the past decades especially in the 1980s. The greatest extreme precipitation events tend to occur after the late 1990s and in the southeastern TPS. The ERA5 reanalysis and climate system indices reveal that (1) decreased moisture transports to the southeast in summer due to the weakening of the summer monsoons and the East Asian westerly jet; (2) increased moisture transports to the center in winter due to the strengthening of the winter westerly jet and north Atlantic oscillation; and (3) decreased instability over the southeast thus suppressing precipitation and increased instability over the northwest thus promoting precipitation. All these are conducive to the drying trends in the southeast and the wetting trends in the center.


2021 ◽  
Vol 169 (3-4) ◽  
Author(s):  
Mark D. Risser ◽  
Daniel R. Feldman ◽  
Michael F. Wehner ◽  
David W. Pierce ◽  
Jeffrey R. Arnold

AbstractExtreme precipitation events are a major cause of economic damage and disruption, and need to be addressed for increasing resilience to a changing climate, particularly at the local scale. Practitioners typically want to understand local changes at spatial scales much smaller than the native resolution of most Global Climate Models, for which downscaling techniques are used to translate planetary-to-regional scale change information to local scales. However, users of statistically downscaled outputs should be aware that how the observational data used to train the statistical models is constructed determines key properties of the downscaled solutions. Specifically for one such downscaling approach, when considering seasonal return values of extreme daily precipitation, we find that the Localized Constructed Analogs (LOCA) method produces a significant low bias in return values due to choices made in building the observational data set used to train LOCA. The LOCA low biases in daily extremes are consistent across event extremity, but do not degrade the overall performance of LOCA-derived changes in extreme daily precipitation. We show that the low (negative) bias in daily extremes is a function of a time-of-day adjustment applied to the training data and the manner of gridding daily precipitation data. The effects of these choices are likely to affect other downscaling methods trained with observations made in the same way. The results developed here show that efforts to improve resilience at the local level using extreme precipitation projections can benefit from using products specifically created to properly capture the statistics of extreme daily precipitation events.


2022 ◽  
Vol 26 (1) ◽  
pp. 117-127
Author(s):  
Tao Xu ◽  
Hongxi Pang ◽  
Zhaojun Zhan ◽  
Wangbin Zhang ◽  
Huiwen Guo ◽  
...  

Abstract. In the East Asian monsoon region, winter extreme precipitation events occasionally occur and bring great social and economic losses. From December 2018 to February 2019, southeastern China experienced a record-breaking number of extreme precipitation events. In this study, we analyzed the variation in water vapor isotopes and their controlling factors during the extreme precipitation events in Nanjing, southeastern China. The results show that the variations in water vapor isotopes are closely linked to the change in moisture sources. Using a water vapor d-excess-weighted trajectory model, we identified the following five most important moisture source regions: South China, the East China Sea, the South China Sea, the Bay of Bengal, and continental regions (northwestern China and Mongolia). Moreover, the variations in water vapor d excess during a precipitation event reflect rapid shifts in the moisture source regions. These results indicate that rapid shifts among multiple moisture sources are important conditions for sustaining wintertime extreme precipitation events over extended periods.


2021 ◽  
Author(s):  
Rohith Muraleedharan Thundathil ◽  
Thomas Schwitalla ◽  
Andreas Behrendt ◽  
Diego Lange ◽  
Cyrille Flamant ◽  
...  

<p>Probabilistic quantitative precipitation forecasting (PrQPF) is a challenging field of meteorology, which is fundamental for the prediction and quantification of extreme precipitation events. With advanced remote-sensing instruments such as lidar systems, it is possible to acquire the high-resolution temporal and spatial dynamical and thermodynamic data for input to the numerical weather prediction (NWP) models through data assimilation (DA) techniques. During the fall, the Mediterranean region is often stricken by heavy precipitation events (HPEs), resulting in a sudden rise of water levels in the rivers and flash floods. Severe damage to life and property arises during these extreme precipitation events every year. A unique and innovative French initiative project, called the Water Vapor Lidar Network assimilation (WaLiNeAs), will start a measurement campaign in early September 2022, deploying a network of autonomous water vapor lidars from research groups of France, Germany, and Italy across the Western Mediterranean. The project aims to implement an integrated prediction tool to enhance the forecast of HPEs in southern France, primarily demonstrating the benefit of assimilating vertically resolved water vapor data in the new version of the French operational AROME NWP system. The Atmospheric Raman Temperature and Humidity Sounder (ARTHUS, (Lange et al. 2019)), from the University of Hohenheim (UHOH), will operate in synergy with other lidar systems. The data collected from the measurement campaign, water vapor and temperature, will be assimilated in the Weather Research and Forecasting (WRF) model system at the Institute of Physics and Meteorology (IPM), UHOH. A thermodynamic lidar operator developed by some of us (Thundathil et al. 2020) will be used to assimilate lidar temperature and water vapor mixing ratio independently. The operator avoids undesirable cross sensitivities to temperature enabling maximum moisture information of the observation to be propagated into the model. An advanced hybrid three-dimensional Variational - Ensemble Transform Kalman Filter (3DVAR-ETKF) DA system with 50 ensemble members, on a convection-permitting resolution of 1.5 km, will be set up for the research study. For the prediction and quantification of the HPE event, the assimilation will be performed in a rapid update cycle mode every 15 minutes before its occurrence. A prototype of the DA system with ten ensemble members and a one-hour rapid update cycle was already developed at IPM (Thundathil et al., 2021). In this case, the impact from a single ground-based lidar spreads spatially for a radius of 100 km. Apart from the improvement in the analyses, the planetary boundary layer height (PBLH) forecast impact persisted 7 hours into forecast time compared with respect to independent ceilometer observations. The results show a promising initiative for future operational lidar network assimilation. We will present the outline and DA setup of the study, highlighting results from our previous lidar DA research.</p>


2020 ◽  
Vol 12 (4) ◽  
pp. 1415
Author(s):  
Runze Tong ◽  
Wenchao Sun ◽  
Quan Han ◽  
Jingshan Yu ◽  
Zaifeng Tian

Extreme weather events can cause a lot of damage in highly populated regions, such as in the Beijing–Tianjin–Hebei Region (BTHR) in northern China. To understand where and how extreme precipitation and temperature events are changing within the BTHR, data for 1959–2018 from 25 mereological stations were used to detect trends in the intensity, frequency, and duration of these events. The results showed that intensity, accumulated amount, the duration of extreme precipitation events, and the annual number of days with precipitation greater than 50 mm decreased on a regional scale over this 60-year period. Changes in extreme precipitation events at most stations were not statistically significant, although a few stations had a significant downward trend. The combined effects of the East Asian summer monsoon and rapid urbanization are possible reasons for these trends. Both the annual maximum and minimum temperature increased on a regional and local scale. The frequency of extreme hot and cold weather also, respectively, increased and decreased, with consistent patterns on a regional and local scale. However, the spatial changes of these trends were different, reflecting the effects of irrigation and urbanization on the regional surface energy balance. These findings are valuable to decisionmakers involved in disaster prevention in the BTHR and in other highly populated regions worldwide.


2012 ◽  
Vol 573-574 ◽  
pp. 395-399
Author(s):  
Yong Wang ◽  
Yuan Yuan Ding ◽  
Qi Long Miao

Based on the daily precipitation data in Northeast China (NE China) from 1961 to 2010, six extreme precipitation indices (RX1day, Rx5day, R10mm, R20mm, R95T, and R99T) in NE China were calculated, and the temporal and spatial characteristics of extreme precipitation events were analyzed. The main results are summarized as follows: Except R99T, other extreme precipitation indicators all show the decreasing trend. All indicators are not significant. From the spatial distribution of extreme precipitation indicators, extreme precipitation indicators have different change situations in various regions, and the decreasing trends are dominant. This shows that the climate has become dry in NE China. It is important to forecast and reduce the climate induced flood risks and provide information for rational countermeasures.


2021 ◽  
Author(s):  
Tao Xu ◽  
Hongxi Pang ◽  
Zhaojun Zhan ◽  
Wangbin Zhang ◽  
Huiwen Guo ◽  
...  

Abstract. In the East Asian monsoon region, winter extreme precipitation events occasionally occur and bring great social and economic losses. From December 2018 to February 2019, Southeast China experienced a record-breaking number of extreme precipitation events. In this study, we analyzed the variation of water vapor isotopes and their controlling factors during the extreme precipitation events in Nanjing, Southeast China. The results show that the variations of water vapor isotopes are closely linked to the change of moisture sources. Using a water vapor d-excess weighted trajectory model, we identified five most important moisture source regions: South China, East China Sea, South China Sea, Bay of Bengal, and Continental regions (Northwest China and Mongolia). Moreover, the variations of water vapor d-excess during a precipitation event reflect rapid shifts of moisture source regions. These results indicate that rapid shifts among multiple moisture sources are important conditions for sustaining wintertime extreme precipitation events over extended periods.


2020 ◽  
Vol 21 (9) ◽  
pp. 2139-2156
Author(s):  
Allison B. Marquardt Collow ◽  
Haiden Mersiovsky ◽  
Michael G. Bosilovich

AbstractTransient, narrow plumes of strong water vapor transport, referred to as atmospheric rivers (ARs), are responsible for much of the precipitation along the West Coast of the United States. The most intense precipitation events are almost always induced by an AR on the coast of Oregon and Washington and can result in detrimental impacts on society due to mudslides and flooding. To accurately predict AR events on numerical weather prediction, subseasonal, and seasonal time scales, it is important to understand the large-scale impacts on extreme AR events. Here, characteristics of ARs that result in an extreme precipitation event are compared to typical ARs on the coast of Washington State. In addition to more intense water vapor transport, notable differences in the synoptic forcing are present during extreme precipitation events that are not present during typical AR events. Subseasonal and seasonal teleconnection patterns are known to influence the weather in the Pacific Northwest and are investigated here. The Madden–Julian oscillation (MJO) plays a role in determining the strength of precipitation associated with an AR on the Washington coast. Phase 5 of the MJO (convection centered over the Maritime Continent) is the most common phase during an extreme precipitation event, while phase 2 (convection over the Indian Ocean) discourages an extreme event from occurring. Interactions between El Niño–Southern Oscillation (ENSO) and the propagation speed of the MJO result in extreme events during phase 1 of the MJO and El Niño but phase 8 during neutral ESNO conditions.


2019 ◽  
Vol 20 (2) ◽  
pp. 275-296 ◽  
Author(s):  
Yang Yang ◽  
Thian Yew Gan ◽  
Xuezhi Tan

Abstract In the past few decades, there have been more extreme climate events occurring worldwide, including Canada, which has also suffered from many extreme precipitation events. In this paper, trend analysis, probability distribution functions, principal component analysis, and wavelet analysis were used to investigate the spatial and temporal patterns of extreme precipitation events of Canada. Ten extreme precipitation indices were calculated using long-term daily precipitation data (1950–2012) from 164 Canadian gauging stations. Several large-scale climate patterns such as El Niño–Southern Oscillation (ENSO), Pacific decadal oscillation (PDO), Pacific–North American (PNA), and North Atlantic Oscillation (NAO) were selected to analyze the relationships between extreme precipitation and climate indices. Convective available potential energy (CAPE), specific humidity, and surface temperature were employed to investigate potential causes of trends in extreme precipitation. The results reveal statistically significant positive trends for most extreme precipitation indices, which means that extreme precipitation of Canada has generally become more severe since the mid-twentieth century. The majority of indices display more increasing trends along the southern border of Canada while decreasing trends dominated the central Canadian Prairies. In addition, strong teleconnections are found between extreme precipitation and climate indices, but the effects of climate patterns differ from region to region. Furthermore, complex interactions of climate patterns with synoptic atmospheric circulations can also affect precipitation variability, and changes to the summer and winter extreme precipitation could be explained more by the thermodynamic impact and the combined thermodynamic and dynamic effects, respectively. The seasonal CAPE, specific humidity, and temperature are correlated to Canadian extreme precipitation, but the correlations are season dependent, which could be positive or negative.


Sign in / Sign up

Export Citation Format

Share Document