Reactive species from aviation in the multi-scale climate-chemistry model system MECO(n)

2021 ◽  
Author(s):  
Sigrun Matthes ◽  
Patrick Peter ◽  
Astrid Kerkweg ◽  
Mariano Mertens ◽  
Patrick Jöckel ◽  
...  

<p>Aviation aims to reduce its climate impact by identifying promising mitigation options which are able to reduce the overall climate effects of aviation considering CO<sub>2</sub> and non-CO<sub>2</sub> effects. While aiming to identify fuel optimal trajectories, aviation also aims to reduce the non-CO<sub>2</sub> effects comprising NO<sub>x</sub>-induced changes of atmospheric ozone and methane. Here climate-chemistry models are required which are able to quantify perturbations in atmospheric composition of reactive species (NO<sub>x</sub>, O<sub>3</sub>) and the associated radiative forcings of aviation emissions relying on advanced modelling capabilities, realistic emission inventory data and global-scale observational datasets from research infrastructures like IAGOS and DLR aircraft measurement campaign data.</p> <p>We use the multi-scale climate-chemistry MECO(n) system which is a “MESSy-fied ECHAM and COSMO nested n-times”, relying on the Modular Earth Submodel System (MESSy) framework. For this purpose, both models have been equipped with the MESSy infrastructure, implying that the same process formulations (MESSy submodels) are available for both models. Modelled atmospheric distributions are systematically compared to observational data from aircraft measurements in the upper troposphere and lower stratosphere. Nudging of meteorology to ERA5 interim data, and special diagnostics available within the modular MESSy infrastructure are implemented in the numerical simulations. Online sampling along aircraft trajectories allows to extract model data with a high temporal resolution (MESSy submodel S4D), in order to evaluate model representation and key processes.</p> <p>Beyond systematic evaluation with IAGOS scheduled aircraft measurements, episodes will be evaluated where dedicated measurements from aircraft campaigns are available, comprising Spring 2014 (ML-CIRRUS campaign), early summer 2020 (Blue Sky campaign) and summer 2021 (Cirrus-HL campaign). Our analysis of reactive species, NO<sub>y</sub> and ozone, identifies those weather pattern and synoptic situations where aviation contributes strong signals, resulting in recommendations on measurement strategies to detect aviation signal in the atmosphere. We evaluate model representation of the NO<sub>x</sub>-induces effect on radiatively active species ozone and methane in both model instances, ECHAM5 and COSMO. This is key for advancing the scientific understanding of NO<sub>x</sub>-induced effects from aviation which is required in order to quantify potential compensation and trade-offs when identifying robust mitigation options for sustainable aviation.</p> <p>This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 875036 (ACACIA, Advancing the Science for Aviation and Climate) and has been supported by the DLR-Projekt Eco2Fly. This work uses measurement data from the European Research Infrastructure IAGOS/CARIBIC. High-Performance Super Computing simulations have been performed by the Deutsches Klima-Rechenzentrum (DKRZ, Hamburg) and the Leibniz-Rechenzentrum (LRZ, München).</p>

Author(s):  
John Tzilivakis ◽  
Kathleen Lewis ◽  
Andrew Green ◽  
Douglas Warner

Purpose – In order to achieve reductions in greenhouse gas (GHG) emissions, it is essential that all industry sectors have the appropriate knowledge and tools to contribute. This includes agriculture, which is considered to contribute about a third of emissions globally. This paper reports on one such tool: IMPACCT: Integrated Management oPtions for Agricultural Climate Change miTigation. The paper aims to discuss these issues. Design/methodology/approach – IMPACCT focuses on GHGs, carbon sequestration and associated mitigation options. However, it also attempts to include information on economic and other environmental impacts in order to provide a more holistic perspective. The model identifies mitigation options, likely economic impacts and any synergies and trade-offs with other environmental objectives. The model has been applied on 22 case study farms in seven Member States. Findings – The tool presents some useful concepts for developing carbon calculators in the future. It has highlighted that calculators need to evolve from simply calculating emissions to identifying cost-effective and integrated emissions reduction options. Practical implications – IMPACCT has potential to become an effective means of provided targeted guidance, as part of a broader knowledge transfer programme based on an integrated suite of guidance, tools and advice delivered via different media. Originality/value – IMPACCT is a new model that demonstrates how to take a more integrated approach to mitigating GHGs on farms across Europe. It is a holistic carbon calculator that presents mitigation options in the context other environmental and economic objectives in the search for more sustainable methods of food production.


2021 ◽  
Author(s):  
Denys Pishniak ◽  
Svitlana Krakovska ◽  
Anastasia Chyhareva ◽  
Sergii Razumnyi

<p>Measurements of precipitation has always had well known difficulties that caused inaccuracies. This is especially acute in Polar regions where prevailing solid precipitation is accomplished with strong winds. Alternatively some indirect methods of precipitation measurements still in development and numerous meteorological instruments have been created on their basis.</p><p>The Akademik Vernadsky station is located in the Antarctic Peninsula region with a large amount of precipitation and  the problem of its measuring has always been relevant here. Although the data of monthly precipitation have been found for Vernadsky (Faraday) station since 1964, the first standard Tretyakov precipitation gauge was set up there only in 1997. But in recent years, several new instruments for indirect precipitation measurement have been installed at the meteorological site. The consistency of their data are the subject for this study. </p><p>Direct comparison of all measurement devices as well as investigation of their estimations dependencies from other meteorological parameters are analysed and will be presented for the period 2019-2020. Originally various instruments showed huge differences in precipitation estimates. Deep analysis and correction of the measurement results according to weather conditions is obviously needed for bias reduction. But the local features of the extremely heterogeneous underlying surface of the region affect the vertical component of the wind, and can cause the natural small scale precipitation variability. </p><p>The advantages of indirect methods for precipitation measuring is a high sensitivity to registering even individual falling precipitation particles and, hence, the really high temporal resolution of the data. Therefore, it can be used for investigation of physical atmospheric processes. As an example, the case study of a cyclone with precipitation phase transition over Vernadsky station on December 5-6, 2020 is investigated and will be presented. A comparison of the measurement data of various devices (Tretyakov Precipitation Gauge, Snow Stick, Vaisala PWD22, Lufft WS100, METEK MRR-PRO) and the ERA-5 reanalysis was carried out. A vertical radar MRR-PRO is of special interest as a measuring instrument for polar regions because it can ignore surface snow transport and has proved reliability in the Antarctic environment recently. In Marine Antarctica this device can identify the height of precipitation melting and also show a number of other useful parameters. This complex of precipitation measurement instruments is planned to be used in the frames of the forthcoming YOPP-SH field campayne.</p>


2020 ◽  
Author(s):  
Dimitry Van der Zande ◽  
Aida Alvera-Azcárate ◽  
Charles Troupin ◽  
João Cardoso Dos Santos ◽  
Dries Van den Eynde

<p>High-quality satellite-based ocean colour products can provide valuable support and insights in the management and monitoring of coastal ecosystems. Today’s availability of Earth Observation (EO) data is unprecedented including medium resolution ocean colour systems (e.g. Sentinel-3/OLCI), high resolution land sensors (e.g. Sentinel-2/MSI) and geostationary satellites (e.g. MSG/SEVIRI). Each of these sensors offers specific advantages in terms of spatial, temporal or radiometric characteristics. In the Multi-Sync project, we developed advanced ocean colour products (i.e. remote sensing reflectance, turbidity, and chlorophyll a concentration) through the synergetic use of these multi-scale EO data taking advantage of spectral characteristics of traditional medium resolution sensors, the high spatial resolution of some land sensors and the high temporal resolution of geostationary sensors.</p><p>To achieve this goal a multi-scale DINEOF (Data Interpolating Empirical Orthogonal Functions) approach was developed to reconstruct missing data using empirical orthogonal functions (EOF), reduce noise and exploit spatio-temporal coherency by joining several spatial and temporal resolutions. Here we present the capacity of DINEOF to extract multi-scale information through the integration of Sentinel-3, Sentinel-2 and SEVIRI datasets.</p><p>The functionality of the advanced multi-scale products will be demonstrated in a case study for the Belgian Coastal Zone (BCZ) highly relevant to the user community: sediment transport modelling near the harbour of Zeebrugge in support of dredging operations. As stated in the OSPAR treaty (1992), Belgium is obliged to monitor and evaluate the effects of all human activities on the marine ecosystem. Dredging activities in and near Belgian harbors fall under this treaty and are performed daily to ensure accessibility of the port by ships. Optimization of these dredging activities requires monitoring data which is typically acquired through in situ observations or modelling data. In this case study we take advantage of Sentinel-3, Sentinel-2 and SEVIRI data characteristics to provide a satellite product that meets the end user requirements in terms of product quality and temporal/spatial resolution.</p><p> </p>


2007 ◽  
Vol 120 (1) ◽  
pp. 58-69 ◽  
Author(s):  
Jeroen C.J. Groot ◽  
Walter A.H. Rossing ◽  
André Jellema ◽  
Derk Jan Stobbelaar ◽  
Henk Renting ◽  
...  

2011 ◽  
Vol 50 (3) ◽  
pp. 579-593 ◽  
Author(s):  
Pamela L. Heinselman ◽  
Sebastián M. Torres

Abstract Since 2007 the advancement of the National Weather Radar Testbed Phased-Array Radar (NWRT PAR) hardware and software capabilities has been supporting the implementation of high-temporal-resolution (∼1 min) sampling. To achieve the increase in computational power and data archiving needs required for high-temporal-resolution sampling, the signal processor was upgraded to a scalable, Linux-based cluster with a distributed computing architecture. The development of electronic adaptive scanning, which can reduce update times by focusing data collection on significant weather, became possible through functionality added to the radar control interface and real-time controller. Signal processing techniques were implemented to address data quality issues, such as artifact removal and range-and-velocity ambiguity mitigation, absent from the NWRT PAR at its installation. The hardware and software advancements described above have made possible the development of conventional and electronic scanning capabilities that achieve high-temporal-resolution sampling. Those scanning capabilities are sector- and elevation-prioritized scanning, beam multiplexing, and electronic adaptive scanning. Each of these capabilities and related sampling trade-offs are explained and demonstrated through short case studies.


2015 ◽  
Vol 8 (2) ◽  
pp. 1117-1169 ◽  
Author(s):  
H. Eskes ◽  
V. Huijnen ◽  
A. Arola ◽  
A. Benedictow ◽  
A.-M. Blechschmidt ◽  
...  

Abstract. The European MACC (Monitoring Atmospheric Composition and Climate) project is preparing the operational Copernicus Atmosphere Monitoring Service (CAMS), one of the services of the European Copernicus Programme on Earth observation and environmental services. MACC uses data assimilation to combine in-situ and remote sensing observations with global and regional models of atmospheric reactive gases, aerosols and greenhouse gases, and is based on the Integrated Forecast System of the ECMWF. The global component of the MACC service has a dedicated validation activity to document the quality of the atmospheric composition products. In this paper we discuss the approach to validation that has been developed over the past three years. Topics discussed are the validation requirements, the operational aspects, the measurement data sets used, the structure of the validation reports, the models and assimilation systems validated, the procedure to introduce new upgrades, and the scoring methods. One specific target of the MACC system concerns forecasting special events with high pollution concentrations. Such events receive extra attention in the validation process. Finally, a summary is provided of the results from the validation of the latest set of daily global analysis and forecast products from the MACC system reported in November 2014.


2004 ◽  
Vol 4 (7) ◽  
pp. 1857-1868 ◽  
Author(s):  
N. Spichtinger ◽  
R. Damoah ◽  
S. Eckhardt ◽  
C. Forster ◽  
P. James ◽  
...  

Abstract. Forest fire emissions have a strong impact on the concentrations of trace gases and aerosols in the atmosphere. In order to quantify the influence of boreal forest fire emissions on the atmospheric composition, the fire seasons of 1997 and 1998 are compared in this paper. Fire activity in 1998 was very strong, especially over Canada and Eastern Siberia, whereas it was much weaker in 1997. According to burned area estimates the burning in 1998 was more than six times as intense as in 1997. Based on hot spot locations derived from ATSR (Along Track Scanning Radiometer) data and official burned area data, fire emissions were estimated and their transport was simulated with a Lagrangian tracer transport model. Siberian and Canadian forest fire tracers were distinguished to investigate the transport of both separately. The fire emissions were transported even over intercontinental distances. Due to the El Niño induced meteorological situation, transport from Siberia to Canada was enhanced in 1998. Siberian fire emissions were transported towards Canada and contributed concentrations more than twice as high as those due to Canada's own CO emissions by fires. In 1998 both tracers arrive at higher latitudes over Europe, which is due to a higher North Atlantic Oscillation (NAO) index in 1998. The simulated emission plumes are compared to CMDL (Climate Monitoring and Diagnostics Laboratory) CO2 and CO data, Total Ozone Mapping Spectrometer (TOMS) aerosol index (AI) data and Global Ozone Monitoring Experiment (GOME) tropospheric NO2 and HCHO columns. All the data show clearly enhanced signals during the burning season of 1998 compared to 1997. The results of the model simulation are in good agreement with ground-based as well as satellite-based measurements.


Sign in / Sign up

Export Citation Format

Share Document