Neogene and active brittle deformation on Amorgos Island (Greece)

Author(s):  
Jan Behrmann ◽  
Jakob Schneider ◽  
Benjamin Zitzow

<p>Amorgos is the south-eastern outpost of the Cyclades Islands in the Aegean Sea, which forms part of the Neogene-Quaternary zone of crustal and lithospheric N-S upper plate extension northward of the Hellenic subduction zone and deep sea trench. Apart from subduction-related earthquakes further south, the southern Aegean is affected by frequent earthquakes sourced in the upper plate. The twin earthquakes of 9 July 1956, followed by a strong tsunami, were the strongest events of this kind in the past Century. Hypocenters are related to a NE-SW oriented normal fault bounding the Amorgos-Santorini Graben System. There are questions in the literature regarding the seismic source and fault plane solutions, especially the contribution of a transcurrent faulting component.</p><p>We have analyzed the kinematics of brittle faults exposed on Amorgos Island itself that could be related to Neogene and active extensional and/or transcurrent deformation. Seismic slip often occurs on previously existing faults. Thus, their orientations and kinematics may help shed light on the structure of seismic sources at depth. We present evidence for a complex history of faulting. Early normal detachment faults and shear zones overprint older (rare) reverse faults, and are themselves overprinted by several sets of dominantly dextral NE and SE trending strike slip faults. Youngest is a conjugate set of NE trending high-angle normal faults. These are especially frequent along the SE coast of the island, suggesting a clear spatial relationship with the 1956 rupture. They can be fitted to a moment tensor solution similar to the published solutions for the 1956 Amorgos earthquake. The kinematic solution for the population of early normal faults suggests that the whole of Amorgos Island may have experienced a 15° NNW tilt during later extension, which lets us suspect that the island could be a tilted block of a much larger fault system. Regarding long-term late Neogene to Quaternary kinematics, dextrally transtensive fault slip is required to fit the regional pattern of extensional deformation in the Aegean, and this is reflected by small-scale brittle faulting on Amorgos.</p>

2020 ◽  
Author(s):  
Gordon Lister

<p>The slab-sheet-slump hypothesis postulates the existence of relatively weak sheets of partially-hydrated and dehydrating mantle that slide down the face of lithospheric slabs as they subduct, at a rate slightly faster than the overall rate of subduction. The slab-sheet-slump hypothesis takes note of arrays of otherwise inexplicable landward-dipping tilt-blocks. These typically form and/or accentuate in the uppermost 20-25 km of slabs as they enter the subduction zone, in the time preceding, or in the immediate aftermath, of large megathrust earthquakes. The slab-sheet-slump hypothesis suggests that displacement on these headwall faults connects to detachment faults or ductile shear zones at depth, and that this detachment partially uncouples the slumping sheet from the rest of the subducting lithosphere. The dimensions vary. The width of the slump channel may range from 30—100 km. The depth extent is determined by the geometry of the paired seismic zone that forms 20-30 km beneath the slab-asthenosphere boundary.</p><p>The slab-sheet-slump hypothesis further suggests that seismogenic failure within the interior of a slumping slab-sheet leads to paired seismic zones. The surface of the slab-sheet (dominated by the oceanic crust) may fail in a brittle fashion, with fault orientation predicted by the Coulomb-Mohr failure criterion. The base of the slab-sheet may fail as the result of boudinage, with the shallowly-dipping orientation of semi-brittle or ductile faults predicted by a maximum moment condition. Occasionally, but rarely, the magnitude of stored elastic potential energy may allow major earthquakes, and these more accurately decorate the structure of the slab sheet. The 2006-2007 Kuril Islands rupture showed the first example of a M<sub>w</sub>>8 earthquake on the sidewall of a slab-sheet slump. The 2011 Great Earthquake was accompanied by accelerated motion in the inferred slab sheet beneath. Earthquakes within the slab sheet occasionally exceed M<sub>w</sub> 7, allowing delineation of the rupture. In the upper plane, some orientations may reflect the structuring caused by the original landward-dipping normal faults. Fault orientations in the lower levels of the slab sheet may reflect structuring caused by boudinage.  </p><p>Paired seismic zones otherwise present an enigma. Estimates of the elastic thickness of unstructured lithosphere range from 60-120 km. Yet paired seismic zones are rarely more than 20-30 km apart. Flexure of an uncoupled slab sheet allows explanation of this paradox, while the bending or unbending of unstructured lithosphere does not. Moment tensor data are consistent with the existence of two aseismic shear zones, one adjacent to the slab surface, with the same sense of shear as required by subduction, while the basal shear zone has the opposite sense, consistent with that required by the slab-sheet-slump hypothesis. These structures appear to be persistent over long time periods, so they match the geomorphology of individual segments of the adjacent subduction megathrust.</p>


2020 ◽  
Vol 59 (4) ◽  
pp. 299-316
Author(s):  
Mohamad Khir Abdul-Wahed ◽  
Mohammed ALISSA

Northwestern Syria is a key area in the eastern Mediterranean to study the active tectonics and stress pattern across the Arabia-Eurasia convergent plate boundary. This study aims to outline the present-day stress regime in this region of Syria using the fault plane solutions of the largest events recorded by the Syrian National Seismological Network from 1995 to 2011. A dataset of fault-plane solutions was obtained for 48 events having at least 5 P-wave polarities. The tectonic regime for most of these events is extensional and produces normal mechanisms in agreement with the local configurations of the seismogenic faults in the region. Strike-slip mechanisms are more scarce and restricted to certain areas, such as the northern extension of the Dead Sea fault system. The results of the current study reveal the spatial variations of SHmax orientation across the northwestern Syria region. This spatial variation of the present-day stress field highlights the role of main geometrically complex shear zones in the present-day stress pattern of northwestern Syria. However, these results show, regardless of the relatively small magnitudes of the studied events, they provide a picture of the local stress deviations that have currently been taking place along the local active faults.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 983
Author(s):  
Orivaldo Ferreira Baltazar ◽  
Lydia Maria Lobato

The Quadrilátero Ferrífero region is located in the extreme southeast of the Brasiliano São Francisco craton, Minas Gerais state, Brazil. It is composed of (i) Archean TTG granite-gneaissic terranes; (ii) the Archean Rio das Velhas greenstone belt; (iii) the Proterozoic metasedimentary and metavolcano-sedimentary covers. The Rio das Velhas rocks were deposited in the synformal NW–SE-directed Nova Lima basin. The Archean deformation converted the Nova Lima basin into an ample synclinorium with an eastern inverted flank. Archean orogenic gold mineralization within the Rio das Velhas greenstone belt rocks is controlled by NNW–SSE-directed, Archean regional shear zones subparallel to the strata of the Nova Lima synclinorium borders. Transamazonian and Brasiliano orogenies are superposed onto the Archean structures that control gold mineralization. In the eastern domain, Brasiliano fold-and-fault belts prevail, whereas in the western domain Archean and Transamazonian structures abound. The present study focus mainly is the western domain where the Cuiabá, Morro Velho, Raposos, Lamego and Faria deposits are located. Gold orebodies plunge to the E–NE and are tectonically controlled by the Archean D1–D2 deformation. The D3 Transamazonian compression—Which had a SE–NW vector sub-parallel to the regional mineralized Archean foliation/bedding—Buckled these structures, resulting in commonly open, synformal and antiformal regional folds. These are well documented near the gold deposits, with NE–SW axial traces and fold axes plunging to E–NE. Such folds are normal to inverted, NW-verging, with an axial planar foliation dipping moderately to the SE. The Transamazonian compression has only been responsible for the reorientation of the mineralized Archean gold ores, due to coaxial refolding characterized by an opposite tectonic transport. It has therefore not caused any other significant changes. Thrust shear zones, sub-parallel to the strong Transamazonian foliation, have given rise to localized metric segmentation and to the dislocation of gold orebodies. Throughout the region, along the towns of Nova Lima to Sabará, structures pertaining to the Brasiliano Araçuaí orogeny are represented only by gentle folding and by a discrete, non-pervasive crenulation cleavage. Thrust-shear zones and small-scale normal faults have caused, at most, metric dislocations along N–S-oriented planes.


2001 ◽  
Vol 34 (1) ◽  
pp. 217 ◽  
Author(s):  
Ε. ΣΚΟΥΡΤΣΟΣ ◽  
Α. ΑΛΕΞΟΠΟΥΛΟΣ ◽  
Σ. ΛΕΚΚΑΣ

The geological structure of Vlahokerasia metamorphic core is consisted by a series of imbricated tectonic units, the occurrence of which, from the bottom to the top is as follows: Marbles, Phylites-Quartzites, Tripolitza and Pindos unit. Nevertheless, it has often been observed that some units are juxtaposed, not on the immediate tectonically underlying unit but on even lower units (i.e. Pindos unit lies directly on the Phyllites-Quartzites unit). The first two units, which have undergone Late Oligocene - Early Miocene HP/LT metamorphism, represents the lower plate of the metamorphic core, whereas the latter two (Pindos and Tripolitza units) correspond to the upper plate. The rocks of the upper plate are mainly characterized by a relatively small thickness (<300m) and they are strongly tectonized by two sets of normal faults. The main fault system trends in a ΝW orientation whereas the second one, which is younger, intersects the first set in a NNE orientation. Fault plane solutions performed on the previous-mentioned fault scarps showed a NE-SW oriented extensional stress distribution. In order to study the extensional tectonics, which has obviously influenced the fabric of the whole upper plate, a cross-section parallel to the main extensional axis and very close to the detachment surface has been constructed. The restoration of the cross-section showed that the extension of the upper plate was a result of the function of two sets of 'domino faults' of, relatively, opposite polarity. The gradual activation of these two sets of faults caused a severe thinning of the upper plate, expressed by a horizontal extensional deformation in the order of 302-422 %. Based on the existing radiochronological data, derived from the lower plate and on the age of the postalpine formations, which cover uncomformably the older structures, we assume that the extensional deformation of the upper plate took place during Early Miocene-Lower Pliocene. Regarding the post-alpine sediments, they have been deposited into basins created during the activity of a NW-oriented normal fault system, which cut through the older extensional features.


2021 ◽  
Author(s):  
Hamed Fazlikhani ◽  
Wolfgang Bauer ◽  
Harald Stollhofen

Abstract. The Bohemian Massif exposes structures and metamorphic rocks remnant from the Variscan Orogeny in Central Europe and is bordered by the Franconian Fault System (FFS) to the west. Across the FFS, possible presence of Variscan units and structures are buried by Permo-Mesozoic sedimentary rocks. We integrate existing DEKORP 2D seismic reflection, well and surface geological data with the newly acquired FRANKEN 2D seismic survey to investigate the possible westward continuation of Variscan tectonostratigraphic units and structures, and their influence on latest to post-Variscan basin development. Subsurface Permo-Mesozoic stratigraphy is obtained from available wells and are tied to seismic reflection profiles using a synthetic seismogram calculated from density and velocity logs. Below the sedimentary cover, three main basement units are identified using seismic facies descriptions that are compared with seismic reflection characteristics of exposed Variscan units east of the FFS. Our results show that Upper Paleozoic low-grade metasedimentary rocks and possible Variscan nappes are bounded and transported by Variscan shear zones to ca. 65 km west of the FFS. Basement seismic facies in the footwall of the Variscan shear zones are interpreted as Saxothuringian basement. We show that the location of normal fault-bounded latest to post-Variscan Upper Carboniferous-Permian basins are controlled by the geometry of underlying Variscan shear zones. Some of these Upper Carboniferous-Permian normal faults reactivated as steep reverse faults during the regional Upper Cretaceous inversion. Our results also highlight that reverse reactivation of normal faults gradually decreases west of the FFS.


2014 ◽  
Vol 185 (3) ◽  
pp. 171-189 ◽  
Author(s):  
Patrick Rolin ◽  
Didier Marquer ◽  
Charles Cartannaz ◽  
Philippe Rossi

AbstractThe Variscan continental collision induced the development of large crustal melting in the western French Massif Central, accompanied by emplacement and deformation of syn- to post-tectonic granites spatially related to normal and strike slip faulting. Our study focuses on the regional deformation and shear zone patterns in the Millevaches massif, one of the largest magmatic area of the French Massif Central. In this massif, the syn-tectonic intrusions are related i) to the dextral wrenching along the Treignac-Pradines shear zones and the Creuse faults system, and ii) to the coeval extension along the N000°–N020° normal faults on the western edge of the Millevaches massif (Bourganeuf and Argentat faults). The analysis of deformation and kinematics correlated to new datations of granites allow us to propose a pull-apart model to explain the tectono-magmatic evolution of this part of the Variscan belt from 350 Ma to 325 Ma. At that time, these granites intruded a “pull-apart” system bounded by two major N140°–160° dextral strike-slip zones operating in the middle continental crust during a bulk N020° regional shortening.From 325 Ma to 320 Ma, a clockwise rotation of the regional shortening axis was responsible for the late reactivation of the N020° eastern Millevaches tectonic border as a dextral fault system (Felletin-Ambrugeat fault system). This NE-SW shortening displaced the N140°–160° Creuse fault system and induced a reverse motion along the northern border of the Millevaches massif (St-Michel-de-Veisse fault). This Visean tectono-magmatic event induced the late exhumation of the Millevaches massif with respect to surrounding units and favoured the widespread granite emplacement in this part of the Variscan belt.


2020 ◽  
Vol 12 (1) ◽  
pp. 479-490
Author(s):  
Ahu Kömeç Mutlu

AbstractThis study focuses on the seismicity and stress inversion analysis of the Simav region in western Turkey. The latest moderate-size earthquake was recorded on May 19, 2011 (Mw 5.9), with a dense aftershock sequence of more than 5,000 earthquakes in 6 months. Between 2004 and 2018, data from earthquake events with magnitudes greater than 0.7 were compiled from 86 seismic stations. The source mechanism of 54 earthquakes with moment magnitudes greater than 3.5 was derived by using a moment tensor inversion. Normal faults with oblique-slip motions are dominant being compatible with the NE-SW extension direction of western Turkey. The regional stress field is assessed from focal mechanisms. Vertically oriented maximum compressional stress (σ1) is consistent with the extensional regime in the region. The σ1 and σ3 stress axes suggest the WNW-ESE compression and the NNE-SSW dilatation. The principal stress orientations support the movement direction of the NE-SW extension consistent with the mainly observed normal faulting motions.


2020 ◽  
Vol 12 (1) ◽  
pp. 851-865
Author(s):  
Sukonmeth Jitmahantakul ◽  
Piyaphong Chenrai ◽  
Pitsanupong Kanjanapayont ◽  
Waruntorn Kanitpanyacharoen

AbstractA well-developed multi-tier polygonal fault system is located in the Great South Basin offshore New Zealand’s South Island. The system has been characterised using a high-quality three-dimensional seismic survey tied to available exploration boreholes using regional two-dimensional seismic data. In this study area, two polygonal fault intervals are identified and analysed, Tier 1 and Tier 2. Tier 1 coincides with the Tucker Cove Formation (Late Eocene) with small polygonal faults. Tier 2 is restricted to the Paleocene-to-Late Eocene interval with a great number of large faults. In map view, polygonal fault cells are outlined by a series of conjugate pairs of normal faults. The polygonal faults are demonstrated to be controlled by depositional facies, specifically offshore bathyal deposits characterised by fine-grained clays, marls and muds. Fault throw analysis is used to understand the propagation history of the polygonal faults in this area. Tier 1 and Tier 2 initiate at about Late Eocene and Early Eocene, respectively, based on their maximum fault throws. A set of three-dimensional fault throw images within Tier 2 shows that maximum fault throws of the inner polygonal fault cell occurs at the same age, while the outer polygonal fault cell exhibits maximum fault throws at shallower levels of different ages. The polygonal fault systems are believed to be related to the dewatering of sedimentary formation during the diagenesis process. Interpretation of the polygonal fault in this area is useful in assessing the migration pathway and seal ability of the Eocene mudstone sequence in the Great South Basin.


1970 ◽  
Vol 60 (5) ◽  
pp. 1669-1699 ◽  
Author(s):  
Leonardo Seeber ◽  
Muawia Barazangi ◽  
Ali Nowroozi

Abstract This paper demonstrates that high-gain, high-frequency portable seismographs operated for short intervals can provide unique data on the details of the current tectonic activity in a very small area. Five high-frequency, high-gain seismographs were operated at 25 sites along the coast of northern California during the summer of 1968. Eighty per cent of 160 microearthquakes located in the Cape Mendocino area occurred at depths between 15 and 35 km in a well-defined, horizontal seismic layer. These depths are significantly greater than those reported for other areas along the San Andreas fault system in California. Many of the earthquakes of the Cape Mendocino area occurred in sequences that have approximately the same magnitude versus length of faulting characteristics as other California earthquakes. Consistent first-motion directions are recorded from microearthquakes located within suitably chosen subdivisions of the active area. Composite fault plane solutions indicate that right-lateral movement prevails on strike-slip faults that radiate from Cape Mendocino northwest toward the Gorda basin. This is evidence that the Gorda basin is undergoing internal deformation. Inland, east of Cape Mendocino, a significant component of thrust faulting prevails for all the composite fault plane solutions. Thrusting is predominant in the fault plane solution of the June 26 1968 earthquake located along the Gorda escarpement. In general, the pattern of slip is consistent with a north-south crustal shortening. The Gorda escarpment, the Mattole River Valley, and the 1906 fault break northwest of Shelter Cove define a sharp bend that forms a possible connection between the Mendocino escarpment and the San Andreas fault. The distribution of hypocenters, relative travel times of P waves, and focal mechanisms strongly indicate that the above three features are surface expressions of an important structural boundary. The sharp bend in this boundary, which is concave toward the southwest, would tend to lock the dextral slip along the San Andreas fault and thus cause the regional north-south compression observed at Cape Mendocino. The above conclusions support the hypothesis that dextral strike-slip motion along the San Andreas fault is currently being taken up by slip along the Mendocino escarpment as well as by slip along northwest trending faults in the Gorda basin.


2021 ◽  
Author(s):  
Paraskevi Io Ioannidi ◽  
Laetitia Le Pourhiet ◽  
Philippe Agard ◽  
Samuel Angiboust ◽  
Onno Oncken

&lt;p&gt;Exhumed subduction shear zones often exhibit block-in-matrix structures comprising strong clasts within a weak matrix (m&amp;#233;langes). Inspired by such observations, we create synthetic models with different proportions of strong clasts and compare them to natural m&amp;#233;lange outcrops. We use 2D Finite Element visco-plastic numerical simulations in simple shear kinematic conditions and we determine the effective rheology of a m&amp;#233;lange with basaltic blocks embedded within a wet quartzitic matrix. Our models and their structures are scale-independent; this allows for upscaling published field geometries to km-scale models, compatible with large-scale far-field observations. By varying confining pressure, temperature and strain rate we evaluate effective rheological estimates for a natural subduction interface. Deformation and strain localization are affected by the block-in-matrix ratio. In models where both materials deform viscously, the effective dislocation creep parameters (A, n, and Q) vary between the values of the strong and the weak phase. Approaching the frictional-viscous transition, the m&amp;#233;lange bulk rheology is effectively viscous creep but in the small scale parts of the blocks are frictional, leading to higher stresses. This results in an effective value of the stress exponent, n, greater than that of both pure phases, as well as an effective viscosity lower than the weak phase. Our effective rheology parameters may be used in large scale geodynamic models, as a proxy for a heterogeneous subduction interface, if an appropriate evolution law for the block concentration of a m&amp;#233;lange is given.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document