scholarly journals Present-day stress state in northwestern Syria

2020 ◽  
Vol 59 (4) ◽  
pp. 299-316
Author(s):  
Mohamad Khir Abdul-Wahed ◽  
Mohammed ALISSA

Northwestern Syria is a key area in the eastern Mediterranean to study the active tectonics and stress pattern across the Arabia-Eurasia convergent plate boundary. This study aims to outline the present-day stress regime in this region of Syria using the fault plane solutions of the largest events recorded by the Syrian National Seismological Network from 1995 to 2011. A dataset of fault-plane solutions was obtained for 48 events having at least 5 P-wave polarities. The tectonic regime for most of these events is extensional and produces normal mechanisms in agreement with the local configurations of the seismogenic faults in the region. Strike-slip mechanisms are more scarce and restricted to certain areas, such as the northern extension of the Dead Sea fault system. The results of the current study reveal the spatial variations of SHmax orientation across the northwestern Syria region. This spatial variation of the present-day stress field highlights the role of main geometrically complex shear zones in the present-day stress pattern of northwestern Syria. However, these results show, regardless of the relatively small magnitudes of the studied events, they provide a picture of the local stress deviations that have currently been taking place along the local active faults.

1976 ◽  
Vol 66 (6) ◽  
pp. 1931-1952
Author(s):  
Donald J. Stierman ◽  
William L. Ellsworth

abstract The ML 6.0 Point Mugu, California earthquake of February 21, 1973 and its aftershocks occurred within the complex fault system that bounds the southern front of the Transverse Ranges province of southern California. P-wave fault plane solutions for 51 events include reverse, strike slip and normal faulting mechanisms, indicating complex deformation within the 10-km broad fault zone. Hypocenters of 141 aftershocks fail to delineate any single fault plane clearly associated with the main shock rupture. Most aftershocks cluster in a region 5 km in diameter centered 5 km from the main shock hypocenter and well beyond the extent of fault rupture estimated from analysis of body-wave radiation. Strain release within the imbricate fault zone was controlled by slip on preexisting planes of weakness under the influence of a NE-SW compressive stress.


2021 ◽  
Author(s):  
Guido Maria Adinolfi ◽  
Raffaella De Matteis ◽  
Rita De Nardis ◽  
Aldo Zollo

Abstract. Improving the knowledge of seismogenic faults requires the integration of geological, seismological, and geophysical information. Among several analyses, the definition of earthquake focal mechanisms plays an essential role in providing information about the geometry of individual faults and the stress regime acting in a region. Fault plane solutions can be retrieved by several techniques operating in specific magnitude ranges, both in the time and frequency domain and using different data. For earthquakes of low magnitude, the limited number of available data and their uncertainties can compromise the stability of fault plane solutions. In this work, we propose a useful methodology to evaluate how well a seismic network used to monitor natural and/or induced micro-seismicity estimates focal mechanisms as function of magnitude, location, and kinematics of seismic source and consequently their reliability in defining seismotectonic models. To study the consistency of focal mechanism solutions, we use a Bayesian approach that jointly inverts the P/S long-period spectral-level ratios and the P polarities to infer the fault-plane solutions. We applied this methodology, by computing synthetic data, to the local seismic network operated in the Campania-Lucania Apennines (Southern Italy) to monitor the complex normal fault system activated during the Ms 6.9, 1980 earthquake. We demonstrate that the method we propose can have a double purpose. It can be a valid tool to design or to test the performance of local seismic networks and more generally it can be used to assign an absolute uncertainty to focal mechanism solutions fundamental for seismotectonic studies.


Solid Earth ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 65-83
Author(s):  
Guido Maria Adinolfi ◽  
Raffaella De Matteis ◽  
Rita de Nardis ◽  
Aldo Zollo

Abstract. Improving the knowledge of seismogenic faults requires the integration of geological, seismological, and geophysical information. Among several analyses, the definition of earthquake focal mechanisms plays an essential role in providing information about the geometry of individual faults and the stress regime acting in a region. Fault plane solutions can be retrieved by several techniques operating in specific magnitude ranges, both in the time and frequency domain and using different data. For earthquakes of low magnitude, the limited number of available data and their uncertainties can compromise the stability of fault plane solutions. In this work, we propose a useful methodology to evaluate how well a seismic network, used to monitor natural and/or induced micro-seismicity, estimates focal mechanisms as a function of magnitude, location, and kinematics of seismic source and consequently their reliability in defining seismotectonic models. To study the consistency of focal mechanism solutions, we use a Bayesian approach that jointly inverts the P/S long-period spectral-level ratios and the P polarities to infer the fault plane solutions. We applied this methodology, by computing synthetic data, to the local seismic network operating in the Campania–Lucania Apennines (southern Italy) aimed to monitor the complex normal fault system activated during the Ms 6.9, 1980 earthquake. We demonstrate that the method we propose is effective and can be adapted for other case studies with a double purpose. It can be a valid tool to design or to test the performance of local seismic networks, and more generally it can be used to assign an absolute uncertainty to focal mechanism solutions fundamental for seismotectonic studies.


2020 ◽  
Vol 224 (1) ◽  
pp. 637-648
Author(s):  
Ferdinando Napolitano ◽  
Danilo Galluzzo ◽  
Anna Gervasi ◽  
Roberto Scarpa ◽  
Mario La Rocca

SUMMARY Relative location of microearthquakes that occurred at Mt Pollino (Italy) from 2011 to 2013 have been analyzed with the aim of a detailed imaging of the geometry of active faults. We identified 27 clusters composed of a number of earthquakes from 9 to 33, with local magnitude in the range 0.6–2.7. The relative location shows that the distribution of hypocentres in each cluster is characterized by extension from few tens of meters to at most 350 m. For each cluster the hypocentre distribution was fitted by a plane to infer the fault orientation, and results were compared with the fault plane solutions corresponding to the focal mechanism of earthquakes of the same cluster. The comparison shows a good agreement in most of the cases. The relative location analysis, generally applied to earthquakes with similar waveform, has been improved to permit also the relative location of earthquakes characterized by not similar signals. To achieve this purpose a modified procedure that overcome the condition of very similar waveforms has been applied to estimate the time delay between first pulses of the master events. The relative location of master events of all clusters shows a precise imaging of the relative position of all analysed sources and allows also to follow with high accuracy the evolution in time of the seismic swarm within the selected periods. The hypocentre position of master events and the nearly parallel fitting planes of any clusters suggest that most of the analyzed earthquakes were produced by different patches of the same fault. The final results depict a main fault plane characterized by NW–SE strike, dip of about 35–45° and depth between 4.5 and 6.5 km b.s.l. Focal mechanisms, used also to evaluate the local stress field, are mostly of normal type with few strike slip solutions for the shallowest events. This result is in good agreement with the local tectonic stress regime that is characterized by predominant NE–SW transtension, as inferred from structural, seismological and geophysical data.


1987 ◽  
Vol 58 (3) ◽  
pp. 65-72 ◽  
Author(s):  
Rutger Wahlstreöm

Abstract An earthquake near Ottawa (45.20°N, 75.75°W, focal depth 12 km) of unusually large size for the region's seisrhicity (mb(Lg) = 4.1) provided good P-wave first-motion data for a focal-mechanism solution. The maximum intensity was V(MM) and the area of perceptibility in Canada about 80,000 km2. The first and largest recorded aftershock occurred nine minutes after the main shock with magnitude mb(Lg) = 1.7. Two further small aftershocks ware recorded by a field network. The mechanism is thrust faulting with a predominantly horizontal pressure axis trending 154°. Thrust mechanisms have been found for other earthquakes in southeastern Canada and the northeastern U.S., but orientations of their stress axes are different, and so the North Gower earthquake may reflect a local and not a regional stress field. The nodal planes have strike 71°, dip 75°, and strike 221°, dip 17°. The spatial distribution of aftershocks suggests the gently-dipping nodal plane could be the fault plane. There is uncertainty about the seismotectonics of the region, and the orientation of neither nodal plane correlates with known geological features. More earthquake fault-plane solutions are required to interpret the seismotectonics and the stress regime.


1970 ◽  
Vol 60 (5) ◽  
pp. 1669-1699 ◽  
Author(s):  
Leonardo Seeber ◽  
Muawia Barazangi ◽  
Ali Nowroozi

Abstract This paper demonstrates that high-gain, high-frequency portable seismographs operated for short intervals can provide unique data on the details of the current tectonic activity in a very small area. Five high-frequency, high-gain seismographs were operated at 25 sites along the coast of northern California during the summer of 1968. Eighty per cent of 160 microearthquakes located in the Cape Mendocino area occurred at depths between 15 and 35 km in a well-defined, horizontal seismic layer. These depths are significantly greater than those reported for other areas along the San Andreas fault system in California. Many of the earthquakes of the Cape Mendocino area occurred in sequences that have approximately the same magnitude versus length of faulting characteristics as other California earthquakes. Consistent first-motion directions are recorded from microearthquakes located within suitably chosen subdivisions of the active area. Composite fault plane solutions indicate that right-lateral movement prevails on strike-slip faults that radiate from Cape Mendocino northwest toward the Gorda basin. This is evidence that the Gorda basin is undergoing internal deformation. Inland, east of Cape Mendocino, a significant component of thrust faulting prevails for all the composite fault plane solutions. Thrusting is predominant in the fault plane solution of the June 26 1968 earthquake located along the Gorda escarpement. In general, the pattern of slip is consistent with a north-south crustal shortening. The Gorda escarpment, the Mattole River Valley, and the 1906 fault break northwest of Shelter Cove define a sharp bend that forms a possible connection between the Mendocino escarpment and the San Andreas fault. The distribution of hypocenters, relative travel times of P waves, and focal mechanisms strongly indicate that the above three features are surface expressions of an important structural boundary. The sharp bend in this boundary, which is concave toward the southwest, would tend to lock the dextral slip along the San Andreas fault and thus cause the regional north-south compression observed at Cape Mendocino. The above conclusions support the hypothesis that dextral strike-slip motion along the San Andreas fault is currently being taken up by slip along the Mendocino escarpment as well as by slip along northwest trending faults in the Gorda basin.


2018 ◽  
Vol 34 (4) ◽  
pp. 1557-1583 ◽  
Author(s):  
Fabrizio Galadini ◽  
Emanuela Falcucci ◽  
Stefano Gori ◽  
Paolo Zimmaro ◽  
Daniele Cheloni ◽  
...  

The Central Italy earthquake sequence produced three main shocks: M6.1 24 August, M5.9 26 October, and M6.5 30 October 2016. Additional M5–5.5 events struck this territory on 18 January 2017 in the Campotosto area. Fault plane solutions for the main shocks exhibit normal faulting (characteristic of crustal extension occurring in the inner central Apennines). Significant evidence, including hypocenter locations, strike and dip angles of the moment tensors, inverted finite fault models (using GPS, interferometric aperture radar, and ground motion data), and surface rupture patterns, all point to the earthquakes having been generated on the Mt. Vettore–Mt. Bove fault system (all three main shocks) and on the Amatrice fault, in the northern sector of the Laga Mountains (portion of 24 August event). The earthquake sequence provides examples of both synthetic and antithetic ruptures on a single fault system (30 October event) and rupture between two faults (24 August event). We describe active faults in the region and their segmentation and present understanding of the potential for linkages between segments (or faults) in the generation of large earthquakes.


2020 ◽  
Author(s):  
Jan Behrmann ◽  
Jakob Schneider ◽  
Benjamin Zitzow

<p>Amorgos is the south-eastern outpost of the Cyclades Islands in the Aegean Sea, which forms part of the Neogene-Quaternary zone of crustal and lithospheric N-S upper plate extension northward of the Hellenic subduction zone and deep sea trench. Apart from subduction-related earthquakes further south, the southern Aegean is affected by frequent earthquakes sourced in the upper plate. The twin earthquakes of 9 July 1956, followed by a strong tsunami, were the strongest events of this kind in the past Century. Hypocenters are related to a NE-SW oriented normal fault bounding the Amorgos-Santorini Graben System. There are questions in the literature regarding the seismic source and fault plane solutions, especially the contribution of a transcurrent faulting component.</p><p>We have analyzed the kinematics of brittle faults exposed on Amorgos Island itself that could be related to Neogene and active extensional and/or transcurrent deformation. Seismic slip often occurs on previously existing faults. Thus, their orientations and kinematics may help shed light on the structure of seismic sources at depth. We present evidence for a complex history of faulting. Early normal detachment faults and shear zones overprint older (rare) reverse faults, and are themselves overprinted by several sets of dominantly dextral NE and SE trending strike slip faults. Youngest is a conjugate set of NE trending high-angle normal faults. These are especially frequent along the SE coast of the island, suggesting a clear spatial relationship with the 1956 rupture. They can be fitted to a moment tensor solution similar to the published solutions for the 1956 Amorgos earthquake. The kinematic solution for the population of early normal faults suggests that the whole of Amorgos Island may have experienced a 15° NNW tilt during later extension, which lets us suspect that the island could be a tilted block of a much larger fault system. Regarding long-term late Neogene to Quaternary kinematics, dextrally transtensive fault slip is required to fit the regional pattern of extensional deformation in the Aegean, and this is reflected by small-scale brittle faulting on Amorgos.</p>


2021 ◽  
Author(s):  
Amin Kahrizi ◽  
Matthias Delescluse ◽  
Mathieu Rodriguez ◽  
Pierre-Henri Roche ◽  
Anne Bécel ◽  
...  

<p>Acoustic full-waveform inversion (FWI), or waveform tomography, involves use of both phase and amplitude of the recorded compressional waves to obtain a high-resolution P-wave velocity model of the propagation medium. Recent theoretical and computing advances now allow the application of this highly non-linear technique to field data. This led to common use of the FWI for industrial purposes related to reservoir imaging, physical properties of rocks, and fluid flow. Application of FWI in the academic domain has, so far, been limited, mostly because of the lack of adequate seismic data. Modern multichannel seismic (MCS) reflection data acquisition now  have long offsets which, in some cases, enable constraining FWI-derived subsurface velocities at a significant enough depth to be useful for structural or tectonic purposes.</p><p>In this study, we show how FWI can help decipher the record of a fault activity through time at the Shumagin Gap in Alaska. The MCS data were acquired on R/V Marcus G. Langseth during the 2011 ALEUT cruise using two 8-km-long seismic streamers and a 6600 cu. in. tuned airgun array. One of the most noticeable reflection features imaged on two profiles is a large, landward-dipping normal fault in the overriding plate; a structural configuration making the area prone to generating both transoceanic and local tsunamis, including from landslides. This fault dips ~40°- 45°, cuts the entire crust and connects to the plate boundary fault at ~35 km depth, near the intersection of the megathrust with the forearc mantle wedge. The fault system reaches the surface at the shelf edge 75 km from the trench and forms the ~6-km deep Sanak basin. However, the record of the recent fault activity remains unclear as contouritic currents tend to be trapped by the topography created by faults, even after they are no longer active.  Erosion surfaces and onlaps from contouritic processes as well as gravity collapses and mass transport deposits result in a complex sedimentary record that make it challenging to evaluate the fault activity using conventional MCS imaging alone. The long streamers used facilitated recording of refraction arrivals in the targeted continental slope area, which permitted running streamer traveltime tomography followed by FWI to produce coincident detailed velocity profiles to complement the reflection sections. We performed FWI imaging on two 40-km-long sections of the ALEUT lines crossing the Sanak basin. The images reveal low velocities of mass transport deposits as well as velocity inversions that may indicate mechanically weak layers linking some faults to gravity sliding on a décollement. One section also shows a velocity inversion in continuity to a bottom simulating reflector (BSR) only partially visible in the reflection image. The BSR velocity anomaly abruptly disappears across the main normal fault suggesting either an impermeable barrier or a lack of trapped fluids/gas in the hanging wall.</p>


Sign in / Sign up

Export Citation Format

Share Document