Using HYDRUS 2D/3D to Evaluate Soil Water Movement in Drip-irrigated Young Populus tomentosa Plantations on Sandy Loam Soil

Author(s):  
Doudou Li ◽  
Benye Xi ◽  
Liming Jia

<p>     Understanding the rules of soil water movement under drip irrigation can provide data support and theoretical basis for developing precise drip irrigation strategies. In this study, a two-years-old <em>Populus tomentosa </em>plantation under surface drip irrigation on sandy loam soil was selected to measure the dynamics of soil water potential (<span><em>ψ</em></span><em><sub>s</sub></em>), wetting front and soil water content (<span><em>θ</em></span>) during irrigation and water redistribution periods were investigated in field experiments. Then, the observed data in the field were used to evaluate the accuracy and feasibility of the HYDRUS-2D/3D model for simulating the short-term soil water movement. Besides, the validated model was used to simulate the dynamics of wetting front under different initial soil water content (<span><em>θ</em></span><em><sub>i</sub></em>). During irrigation, the variation of <span><em>ψ</em></span><em><sub>s</sub></em>, horizontal and vertical movement distances of the wetting front, and <span><em>θ</em></span> within the wetting volume with irrigation duration could be described by the logistic function (<em>R<sup>2</sup></em> = 0.99), the logarithm function (<em>R<sup>2</sup></em> = 0.99), the power function (<em>R<sup>2</sup></em> = 0.82), and the polynomial function (<em>R<sup>2</sup></em> = 0.99), respectively. At the end of irrigation, the horizontal and vertical movement distances of the wetting front reached 22.9 cm and 37.3 cm, respectively. The <span><em>ψ</em></span><em><sub>s</sub></em> and <span><em>θ</em></span> within the soil wetting volume were 61.6% and 30.9% higher than those at the start of the irrigation, respectively, but the <span><em>ψ</em></span><em><sub>s </sub></em>decreased to its initial level about 120 hours later after the stop of irrigation. The average deviations of the horizontal and vertical wetting radius between the simulated and measured values were 1.3 and 4.5 cm, respectively. The mean RMSE and RMAE of HYDRUS-2D/3D for simulating <span><em>θ</em></span> at the end of irrigation and during water redistribution were 0.021 cm<sup>3</sup>∙cm<sup>-3</sup> and 9.7%, respectively. The movement distances of wetting front in the experimental plantation under various soil drought degrees (soil water availabilities were 40%, 60%, 73% and 80%) were obtained through scenarios simulations using HYDRUS-2D/3D. And it was found that the wetting front could move further under higher <span><em>θ</em></span><em><sub>i</sub></em>, and the movement distance of the wetting front was always smaller in the horizontal direction than in the vertical direction under different <span><em>θ</em></span><em><sub>i </sub></em>conditions. Consequently, HYDRUS-2D/3D can be used to well simulate the short-term soil water movement in drip-irrigated young <em>P. tomentosa</em> plantations on sandy loam soil. In addition, the constructed figure (describes the variations of the horizontal and vertical soil wetting distances with the irrigation duration) can be used to determine the reasonable irrigation duration for the plantations of <em>P. tomentosa</em> and other tree species on sandy loam soil.</p>

2001 ◽  
Vol 81 (1) ◽  
pp. 45-52 ◽  
Author(s):  
R H Azooz ◽  
M A Arshad

In areas of the northwestern Canadian Prairies, barley and canola are grown in a short growing season with high rainfall variability. Excessively dry soil in conventional tillage (CT) in dry periods and excessively wet soil in no-tillage (NT) in wet periods could cause a significant decrease in crop production by influencing the availability of soil water. The effects of CT, NT and NT with a 7.5-cm residue-free strip on the planting rows (NTR) on soil water drying (–dW/dt) and recharge (dW/dt) rates were studied in 1992 and 1993 during wet and dry periods to evaluate the impact of NTR, NT and CT systems on soil moisture condition. The soils, Donnelly silt loam and Donnelly sandy loam (both Gray Luvisol) were selected and soil water content by depth was measured by time domain reflectometry. Water retained at 6 matric potentials from –5 to –160 kPa were observed. In the field study, –dW/dt was significantly greater in CT than in NT in the silt loam for the 0- to 30-cm layer during the first 34 d after planting in 1992. The 0- to 30-cm soil layer in CT and NTR dried faster than in NT during a period immediately following heavy rainfall in the silt loam in 1993. The drying coefficient (–Kd ) was significantly greater in CT and NTR than in NT in the silt loam soil in 1993 and in the sandy loam soil in 1992 in the top 30-cm depth. The recharge coefficient (Kr) was significantly greater in NT and NTR than in CT for the silt loam soil. The NTR system increased the –dW/dt by 1.2 × 10-2 to 12.1 × 10-2 cm d-1 in 1992 and 1993 in the silt loam soil and by 10.2 × 10-2 cm d-1 in 1993 in the sandy loam soil as compared with NT. The dW/dt was 8.1 × 10-2 cm d-1 greater in NTR in 1992 and 1993 in the silt loam soil and was 1.9 × 10-2 greater in NTR in 1992 than in CT in the sandy loam soil. The laboratory study indicated that NT soils retained more water than the CT soils. The NTR practice maintained better soil moisture conditions for crop growth than CT in dry periods than NT in wet periods. Compared with NT, the NTR avoided prolonged near-saturated soil conditions with increased soil drying rate under extremely wet soil. Key words: Water drying, water recharge, water depletion, wet and drying periods, hydraulic properties, soil capacity to retain water


2016 ◽  
Vol 49 (4) ◽  
pp. 300-309 ◽  
Author(s):  
Mijin Seo ◽  
Kyunghwa Han ◽  
Kangho Jung ◽  
Heerae Cho ◽  
Yongseon Zhang ◽  
...  

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 486A-486
Author(s):  
Adán Fimbres Fontes ◽  
Raúl Leonel Grijalva Contreras ◽  
Manuel de Jesus Valenzuela Ruiz

The area of olives in the region of Caborca has been increasing in the last years to 4500 ha. Olives in other regions do not need the application of water, at Caborca evaporation is greater than rainfall. Because of that situation, an experiment was conducted in 1998 to determine the optimum water requirements and the crop coefficient for `Manzanillo' olives (2 years of planted) under drip irrigation and microsprinkler in a sandy loam soil. The results indicated no difference between treatments (50%, 75%, and 100% of ET estimated in a pan evaporation). The water applied to each treatment was 13.32, 19.98, and 26.64 cm.


1970 ◽  
Vol 50 (3) ◽  
pp. 409-417 ◽  
Author(s):  
WAYNE R. ROUSE

Actual evapotranspiration was estimated from the soil moisture budget for a grass-covered sandy loam soil at Simcoe, Ontario. Soil moisture was measured at 25 sites distributed over a 6-meter-square grid. The coefficient of variation for actual evapotranspiration estimated at all sites averaged 13% and rose as high as 19%. Average actual evapotranspiration exceeded both the Penman and Thornthwaite estimates of potential evapotranspiration for three of the six measuring intervals, due to deep seepage losses. The application of corrections for the vertical water movement, determined from experimentally derived matric suction and hydraulic conductivity data, gave a substantial deep seepage loss for some periods and a capillary uptake of soil water for others. Vertical losses and gains created errors of up to + 28 and − 29%, respectively, in the standard estimates of actual evapotranspiration. The large spatial variations in evapotranspiration estimates resulted from variations in volumetric soil moisture between sample points, apparently creating differences in the magnitude and direction of vertical water movement across the terminal depth. The horizontal flux of water between measuring points was relatively unimportant in accounting for the spatial variations.


2019 ◽  
Vol 16 (2) ◽  
pp. 232-237 ◽  
Author(s):  
H.X. Wu ◽  
Yunxin Zhang ◽  
Lishu Wang ◽  
Dongjuan Chen ◽  
Chao Ma

PurposeThe purpose of this study is to investigate the effect of different infiltration heads on soil water movement using a free infiltration test for small-diameter tube outflow furrow irrigation under mulch film.Design/methodology/approachThe test consisted of small-diameter tube outflow furrow irrigation under mulch film with three different infiltration heads (3, 4 and 5 cm) and furrow drip irrigation under mulch film using an infiltration head of 4 cm (CK).FindingsDuring irrigation, the accumulated infiltration and migration distance of the wetting front increased with time. During the same infiltration time, both the accumulated infiltration and horizontal migration distance of the wetting front increased with the larger infiltration head, whereas the vertical migration distance of the wetting front gradually decreased. With increasing distance from the furrow center, soil moisture content declined, but the uniformity of its distribution increased as the infiltration head increased.Originality/valueThis study can provide scientific basis for the use of small-diameter tube outflow furrow irrigation under mulch film.


Sensors ◽  
2009 ◽  
Vol 9 (11) ◽  
pp. 9398-9413 ◽  
Author(s):  
Lien Chow ◽  
Zisheng Xing ◽  
Herb Rees ◽  
Fanrui Meng ◽  
John Monteith ◽  
...  

2015 ◽  
Vol 9 (1) ◽  
pp. 265-271 ◽  
Author(s):  
Kai Huang ◽  
Desuo Cai ◽  
Jinchuang Jinchuang ◽  
Wei Pan

A laboratory soil column experiment was first conducted to analyze water movement in latosol of sugarcane field under drip irrigation from single-point source at different emitter discharge rates. Next, a mathematical model of soil water movement under drip irrigation from single-point source was built using Hydrus-3D, which could accurately simulate the shape of the wetted soil volume and the distribution of volumetric water content in the experiment. Further, a Hydrus- 3D model of soil water movement under drip irrigation from double-point source was built and then used to analyze the effects of critical parameters on irrigation uniformity. Results showed that emitter spacing affected irrigation uniformity greatly, but emitter discharge rate did not. According to the irrigation uniformity, project cost and operational management patterns, appropriate drip tape parameters for irrigation of sugarcane in latosol were determined: emitter discharge rate 1.38 L/h, emitter spacing 30 cm, and single-emitter irrigation volume 9.0 L.


Sign in / Sign up

Export Citation Format

Share Document