Monitoring Seismicity on Mars - the Marsquake Service for InSight

Author(s):  
John Clinton ◽  
Domenico Giardini ◽  
Savas Ceylan ◽  
Martin van Driel ◽  
Simon Stähler ◽  
...  

<p>InSight landed on Mars in late November 2018, and the SEIS seismometer package was fully deployed by February 2019. By January 2020, SEIS continues to exceed performance expectations in terms of observed minimum noise. The Marsquake Service (MQS) has been setup to create and curate a seismicity catalogue for Mars over the lifetime of the InSight mission. Seismic waveforms are downloaded daily from the station and are analysed and processed by the MarsQuake Service, with the goal of detecting seismic vibrations not due to local ambient sources. To this end, every precaution is applied to eliminate possible non-seismic sources, such as noise induced by atmospheric phenomena, lander vibrations and orbiter activity. At the date of submission, we have detected 365 events, of different quality and SNR levels. Signal amplitudes remain small and signal can generally only be detected at night. Some events show only low-frequency waves in the 1-10 sec band, others have a high-frequency content up to several Hz, and others have a more broad-band character. A special class of events involves the excitation of a very prominent ambient vibration at 2.4Hz. Despite the scattered nature of the energy, in many cases, distinct phases can be inferred in the waveforms. Body wave character, and back-azimuth, can only be confirmed for 3 broadband events so far.  The MQS approach for determining distances from broadband events identifies phases as mantle P and S-phases and uses an a priori set of several thousand martian models, derived from geophysical, mineralogical and orbital constraints. High frequency events are currently located assuming phases are trapped crustal Pg and Sg and using a simple crustal layer. The MQS works in conjunction with the Mars Structural Service (MSS) on building and adopting updated models. The MQS consists of an international team of seismologists that screen incoming data to identify and characterise any seismicity. In this presentation, we present the MQS, demonstrate how we detect and characterise marsquakes, and describe the challenges we face dealing with the Martian dataset.</p>

1996 ◽  
Vol 199 (7) ◽  
pp. 1631-1642
Author(s):  
J Meyer ◽  
N Elsner

Grasshoppers of 20 acridid species were examined using spectral analysis, laser vibrometry and electrophysiology to determine whether the song spectra, the best frequencies of tympanal-membrane vibrations and the threshold curves of the tympanal nerves are adapted to one another. The songs of almost all species have a relatively broad-band maximum in the region between 20 and 40 kHz and a narrower peak between 5 and 15 kHz. There are clear interspecific differences in the latter, which are not correlated with the length of the body or of the elytra. At the site of attachment of the low-frequency receptors (a-cells), the tympanal membrane oscillates with maximal amplitude in the region from 5 to 10 kHz. At the attachment site of the high-frequency receptors (d-cells), there is also a maximum in this region as well as another around 15-20 kHz. The tympanal nerve is most sensitive to tones between 5 and 10 kHz, with another sensitivity maximum between 25 and 35 kHz. The species may differ from one another in the position of the low-frequency peaks of the membrane oscillation, of the nerve activity and of the song spectra. No correlation was found between the characteristic frequency of the membrane oscillation and the area of the tympanal membrane. Within a given species, the frequency for maximal oscillation of the membrane at the attachment site of the low-frequency receptors and the frequency for maximal sensitivity of the tympanal nerve are in most cases very close to the low-frequency peak in the song spectrum. In the high-frequency range, the situation is different: here, the position of the peak in the song spectrum is not correlated with the membrane oscillation maximum at the attachment site of the high-frequency receptors, although there is a correlation between the song spectrum and the sensitivity of the tympanal nerve. On the whole, therefore, hearing in acridid grasshoppers is quite well adjusted to the frequency spectra of the songs, partly because the tympanal membrane acts as a frequency filter in the low-frequency range.


2017 ◽  
Vol 10 (13) ◽  
Author(s):  
Rabah Bensalem ◽  
Jean-Luc Chatelain ◽  
Djamel Machane ◽  
El Hadi Oubaiche ◽  
Assia Bouchelouh ◽  
...  

2016 ◽  
Vol 34 (4) ◽  
pp. 462-485 ◽  
Author(s):  
Huong Le ◽  
Bridget Jones ◽  
Tandi Williams ◽  
Sara Dolnicar

Purpose – The purpose of this paper is to provide novel insights into arts consumption behaviour and patterns of communication displayed by arts consumers using Peterson’s theoretical framework, and to identify differences in the use of communication channels across arts segments. Design/methodology/approach – The authors conducted an a priori market segmentation study, with two variables serving as segmentation criteria, namely, the frequency of and the variety of arts events attended. The authors tested for differences in communication patterns. Findings – Four segments were created: low-frequency univores, low-frequency multivores, high-frequency multivores and high-frequency omnivores. They differ in their communication patterns and online behaviours, including their online activities before and after attending arts events. Printed materials and e-mail newsletters were the most effective communication channel for raising awareness of all arts consumers. Research limitations/implications – Understanding these communication patterns can help arts marketers to increase the attendance of low-frequency segments and broaden the variety of arts events attended by the univore and multivore segments. The generalisability of the findings is limited as the survey was conducted among online Australian arts consumers only. Originality/value – The paper adds the dimension of arts consumption frequency to the taxonomy of omnivores and univores proposed by Peterson, which is based on the variety of consumed arts only. The paper contributes to communication and arts marketing literature by identifying key differences in communication patterns across segments of arts consumers and the most promising communication channels to engage them.


Geophysics ◽  
1992 ◽  
Vol 57 (7) ◽  
pp. 902-915 ◽  
Author(s):  
Vlastislav Červený ◽  
José Eduardo P. Soares

The concept of “Fresnel volume ray tracing” consists of standard ray tracing, supplemented by a computation of parameters defining the first Fresnel zones at each point of the ray. The Fresnel volume represents a 3-D spatial equivalent of the Fresnel zone that can also be called a physical ray. The shape of the Fresnel volume depends on the position of the source and the receiver, the structure between them, and the type of body wave under consideration. In addition, the shape also depends on frequency: it is narrow for a high frequency and thick for a low frequency. An efficient algorithm for Fresnel volume ray tracing, based on the paraxial ray method, is proposed. The evaluation of the parameters defining the first Fresnel zone merely consists of a simple algebraic manipulation of the elements of the ray propagator matrix. The proposed algorithm may be applied to any high‐frequency seismic body wave propagating in a laterally varying 2-D or 3-D layered structure (P, S, converted, multiply reflected, etc.). Numerical examples of Fresnel volume ray tracing in 2-D inhomogeneous layered structures are presented. Certain interesting properties of Fresnel volumes are discussed (e.g., the double caustic effect). Fresnel volume ray tracing offers numerous applications in seismology and seismic prospecting. Among others, it can be used to study the resolution of the seismic method and the validity conditions of the ray method.


2006 ◽  
Vol 10 ◽  
pp. 57-60 ◽  
Author(s):  
Tine B. Larsen ◽  
Trine Dahl-Jensen ◽  
Peter Voss ◽  
Thomas Møller Jørgensen ◽  
Søren Gregersen ◽  
...  

Earthquake seismology is a rapidly evolving field that has provided a wealth of new information about deep geological structures on a regional scale over the last decade as well as information about dynamic processes in the Earth. A major leap forward was the development of portable digital broad band (BB) seismographs around 1990. Without any changes in configuration, these are able to record the signals from large distant earthquakes, as well as the signals from weak local events. BB seismographs typically cover a frequency range from 0.0083 Hz to 50 Hz, making them useful for studies ranging from the high frequency signals from explosions to the very low frequency oscillations following major earthquakes. The first seismological observatory in Greenland was established in 1907 in Qeqertarsuaq (GDH) and was in service for about five years (Hjelme 1996). Later, seismographs were established in Ivittut (1927) and Illoqqortoormiut (1928; SCO), and the network has been regularly upgraded and expanded ever since (Fig. 1). Prior to the development of BB seismographs, each station was equipped with a set of seismographs with different frequency sensitivities in an attempt to cover both distant and local earthquakes. Now just one small instrument is needed at each location. The Geological Survey of Denmark and Greenland (GEUS) operates four permanent BB seismographs in Greenland (Fig. 1), two of them in collaboration with foreign institutions. In addition to the permanent network, there are currently 13 temporary BB seismographs active in Greenland, of which eight are operated by GEUS. Three of the temporary seismograph stations were established as part of the Danish Continental Shelf Project (Marcussen et al. 2004), and the remainder in connection with research projects. Three temporary seismographs were deployed during 2005 as part of a research project aiming to resolve very deep regional structures in North Greenland: the Citronen Fjord station (CFJ, Continental Shelf Project), and the stations in Kullorsuaq (KUL) and Daneborg (DBG).


2021 ◽  
Author(s):  
Kyle Q. Lepage ◽  
Cavan N. Fleming ◽  
Mark Witcher ◽  
Sujith Vijayan

AbstractPhase-amplitude coupling (PAC) is the association of the amplitude of a high-frequency oscillation with the phase of a low-frequency oscillation. In neuroscience, this relationship provides a mechanism by which neural activity might be coordinated between distant regions. The dangers and pitfalls of assessing phase-amplitude coupling with existing statistical measures have been well-documented. The limitations of these measures include: (i) response to non-oscillatory, high-frequency, broad-band activity, (ii) response to high-frequency components of the low-frequency oscillation, (iii) adhoc selection of analysis frequency-intervals, and (iv) reliance upon data shuffling to assess statistical significance. In this work, a multitaper phase-amplitude coupling estimator is proposed that addresses issues (i)-(iv) above. Specifically, issue (i) is addressed by replacing the analytic signal envelope estimator computed using the Hilbert transform with a multitaper estimator that down-weights non-sinusoidal activity using a classical, multitaper super-resolution technique. Issue (ii) is addressed by replacing coherence between the low-frequency and high-frequency components in a standard PAC estimator with multitaper partial coherence, while issue (iii) is addressed with a physical argument regarding meaningful neural oscillation. Finally, asymptotic statistical assessment of the multitaper estimator is introduced to address issue (iv).


Geophysics ◽  
1976 ◽  
Vol 41 (6) ◽  
pp. 1305-1317 ◽  
Author(s):  
M. Schoenberger ◽  
F. K. Levin

A zone of sands embedded in shale acts as a filter, both in reflecting energy back to the surface and in transmitting energy to reflectors below them. For a single layer of sand, the reflection filter is periodic—reflecting no energy at some frequencies and more than either of the two individual interfaces at other frequencies. Separating the sand zone into two parts by inserting a thin layer of shale results in reflection filters which differ greatly from one another. The particular filter curve generated depends upon the location of the shale layer. A sand zone filters reflections from interfaces below the zone in a manner complementary to the reflection filter. Where the most energy is reflected, the least is transmitted; conversely, where the least energy is reflected, the most is transmitted. The models considered in this report could easily give rise to high‐amplitude reflections; but, unless the amplitudes were very high, there would be little filtering of deeper reflections. However, for very high‐amplitude reflections and narrow‐band data, little energy would be transmitted and a shadow zone would result. For very high‐amplitude shallow reflections and broad‐band data, a low‐frequency shallow reflection would cause high‐frequency deep reflections; a high‐frequency shallow reflection would cause low‐frequency deep reflections.


Author(s):  
G. Y. Fan ◽  
J. M. Cowley

It is well known that the structure information on the specimen is not always faithfully transferred through the electron microscope. Firstly, the spatial frequency spectrum is modulated by the transfer function (TF) at the focal plane. Secondly, the spectrum suffers high frequency cut-off by the aperture (or effectively damping terms such as chromatic aberration). While these do not have essential effect on imaging crystal periodicity as long as the low order Bragg spots are inside the aperture, although the contrast may be reversed, they may change the appearance of images of amorphous materials completely. Because the spectrum of amorphous materials is continuous, modulation of it emphasizes some components while weakening others. Especially the cut-off of high frequency components, which contribute to amorphous image just as strongly as low frequency components can have a fundamental effect. This can be illustrated through computer simulation. Imaging of a whitenoise object with an electron microscope without TF limitation gives Fig. 1a, which is obtained by Fourier transformation of a constant amplitude combined with random phases generated by computer.


Author(s):  
M. T. Postek ◽  
A. E. Vladar

Fully automated or semi-automated scanning electron microscopes (SEM) are now commonly used in semiconductor production and other forms of manufacturing. The industry requires that an automated instrument must be routinely capable of 5 nm resolution (or better) at 1.0 kV accelerating voltage for the measurement of nominal 0.25-0.35 micrometer semiconductor critical dimensions. Testing and proving that the instrument is performing at this level on a day-by-day basis is an industry need and concern which has been the object of a study at NIST and the fundamentals and results are discussed in this paper.In scanning electron microscopy, two of the most important instrument parameters are the size and shape of the primary electron beam and any image taken in a scanning electron microscope is the result of the sample and electron probe interaction. The low frequency changes in the video signal, collected from the sample, contains information about the larger features and the high frequency changes carry information of finer details. The sharper the image, the larger the number of high frequency components making up that image. Fast Fourier Transform (FFT) analysis of an SEM image can be employed to provide qualitiative and ultimately quantitative information regarding the SEM image quality.


Sign in / Sign up

Export Citation Format

Share Document