The Deflection Magnet Design for PKU Energetic Particle Instrument

Author(s):  
Weihong Shi ◽  
Xiangqian Yu ◽  
Yongfu Wang ◽  
Linghua Wang ◽  
Xin Huang ◽  
...  

<p>The Energetic Particle Instrument (EPI), proposed by Peking University for a L1 mission, is designed to provide the three-dimensional distribution of suprathermal electrons and ions with good time, energy and angular resolutions in the interplanetary space, respectively, at energies from 20 keV to 1 MeV and from 20 keV to 11 MeV.  The EPI consists of four dual-double-ended foil/magnet semi-conductor telescopes, which cleanly separate electrons in the energy range from 20 to 400 keV and ions from 20 keV to 6 MeV.</p><p>The magnet of semi-conductor telescopes consists of four type 677H rare earth permanent magnets and a soft iron frame. Due to the high saturation polarization and high magnetic anisotropy of the Nd<sub>2</sub>Fe<sub>14</sub>B strongly magnetic matrix phase, this system can make the magnetic field strong enough to make the electrons deflected.</p><p>A frame made of iron-cobalt alloy VACOFLUX 50 will be able to combine two pairs of magnets and cause the magnetic field to decay rapidly in the far field. In this way, the two air gaps in the system can simultaneously provide a deflecting magnetic field for a pair of anti-parallel sensor systems.</p>

2020 ◽  
Author(s):  
Liu Yang ◽  
Linghua Wang ◽  
Qiugang Zong ◽  
Xiangqian Yu ◽  
Yongfu Wang ◽  
...  

<p>The PKU energetic particle instrument (EPI) is designed to make measurements of the three-dimensional distribution of suprathermal electrons and ions with good time, energy and angular resolutions in the interplanetary space, respectively, at energies from 20 keV to 1 MeV and from 20 keV to 11 MeV.  The EPI consists of four dual-double-ended foil/magnet semi-conductor telescopes, which cleanly separate electrons in the energy range of 20–400 keV and ions from 20 keV–6 MeV. The output of front detectors is taken in anti-coincidence with center detectors, to achieve the low background. The magnet telescopes also employ the well-established dE/dx vs. total energy approach to determine the nuclear charge and mass of some ion species.</p>


2021 ◽  
Vol 62 ◽  
pp. 386-405
Author(s):  
Graham John Weir ◽  
George Chisholm ◽  
Jerome Leveneur

Neodymium magnets were independently discovered in 1984 by General Motors and Sumitomo. Today, they are the strongest type of permanent magnets commercially available. They are the most widely used industrial magnets with many applications, including in hard disk drives, cordless tools and magnetic fasteners. We use a vector potential approach, rather than the more usual magnetic potential approach, to derive the three-dimensional (3D) magnetic field for a neodymium magnet, assuming an idealized block geometry and uniform magnetization. For each field or observation point, the 3D solution involves 24 nondimensional quantities, arising from the eight vertex positions of the magnet and the three components of the magnetic field. The only unknown in the model is the value of magnetization, with all other model quantities defined in terms of field position and magnet location. The longitudinal magnetic field component in the direction of magnetization is bounded everywhere, but discontinuous across the magnet faces parallel to the magnetization direction. The transverse magnetic fields are logarithmically unbounded on approaching a vertex of the magnet.   doi:10.1017/S1446181120000097


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 431
Author(s):  
Yufen Zhou ◽  
Xueshang Feng

In this paper, using a 3D magnetohydrodynamics (MHD) numerical simulation, we investigate the propagation and interaction of the three halo CMEs originating from the same active region during 4–5 November 1998 from the Sun to Earth. Firstly, we try to reproduce the observed basic features near Earth by a simple spherical plasmoid model. We find that the first component of the compound stream at 1 AU is associated to the first CME of the three halo CMEs. During the propagation in the interplanetary space, the third CME overtakes the second one. The two CMEs merge to a new, larger entity with complex internal structure. The magnetic field of the first CME in the three successive CMEs event is compressed by the following complex ejecta. The interaction between the second and third CME results in the deceleration of the third CME and the enhancement of the density, total magnetic field and south component of the magnetic field. In addition we study the contribution of a single CME to the final simulation results, as well as the effect of the CME–CME interactions on the propagation of an isolated CME and multiple CMEs. This is achieved by analysing a single CME with or without the presence of the preceding CMEs. Our results show that the CME moves faster in a less dense, faster medium generated by the interaction of the preceding CME with the ambient medium. In addition, we show that the CME–CME interactions can greatly alter the kinematics and magnetic structures of the individual events.


2012 ◽  
Vol 152-154 ◽  
pp. 952-957
Author(s):  
Hua Fang Huang ◽  
Yi Zhong Wang ◽  
Zong Guo Zhou ◽  
Yong Hua Chen

When the magnetic articulated needle is inserting, the magnetic field which can produce the magnetic force of variable direction is required in order to implement the magnetic navigation in three-dimensional space. The paper puts forward a method for generating three-dimensional magnetic field based on the rotaion and translation of multiple permanent magnets. In this method, multiple permanent magnets form a circumference array. Every permanent magnet can rotate around the spin axis of itself in the array plane and move along the direction vertical to the array plane. Thus, in the array center, a magnetic fied which can produce the uniform magnetic flux density is obtained. The direction of magnetic fied is controllable in three-dimensional space and the magnitude of magnetic flux density is variable in a certain range. The simulations by ANSYS verify the feasibility of the proposed method.


2013 ◽  
Vol 8 (S300) ◽  
pp. 139-146 ◽  
Author(s):  
Sarah Gibson

AbstractMagnetism defines the complex and dynamic solar corona. Twists and tangles in coronal magnetic fields build up energy and ultimately erupt, hurling plasma into interplanetary space. These coronal mass ejections (CMEs) are transient riders on the ever-outflowing solar wind, which itself possesses a three-dimensional morphology shaped by the global coronal magnetic field. Coronal magnetism is thus at the heart of any understanding of the origins of space weather at the Earth. However, we have historically been limited by the difficulty of directly measuring the magnetic fields of the corona, and have turned to observations of coronal plasma to trace out magnetic structure. This approach is complicated by the fact that plasma temperatures and densities vary among coronal magnetic structures, so that looking at any one wavelength of light only shows part of the picture. In fact, in some regimes it is the lack of plasma that is a significant indicator of the magnetic field. Such a case is the coronal cavity: a dark, elliptical region in which strong and twisted magnetism dwells. I will elucidate these enigmatic features by presenting observations of coronal cavities in multiple wavelengths and from a variety of observing vantages, including unprecedented coronal magnetic field measurements now being obtained by the Coronal Multichannel Polarimeter (CoMP). These observations demonstrate the presence of twisted magnetic fields within cavities, and also provide clues to how and why cavities ultimately erupt as CMEs.


2020 ◽  
pp. 1-20
Author(s):  
GRAHAM WEIR ◽  
GEORGE CHISHOLM ◽  
JEROME LEVENEUR

Neodymium magnets were independently discovered in 1984 by General Motors and Sumitomo. Today, they are the strongest type of permanent magnets commercially available. They are the most widely used industrial magnets with many applications, including in hard disk drives, cordless tools and magnetic fasteners. We use a vector potential approach, rather than the more usual magnetic potential approach, to derive the three-dimensional (3D) magnetic field for a neodymium magnet, assuming an idealized block geometry and uniform magnetization. For each field or observation point, the 3D solution involves 24 nondimensional quantities, arising from the eight vertex positions of the magnet and the three components of the magnetic field. The only unknown in the model is the value of magnetization, with all other model quantities defined in terms of field position and magnet location. The longitudinal magnetic field component in the direction of magnetization is bounded everywhere, but discontinuous across the magnet faces parallel to the magnetization direction. The transverse magnetic fields are logarithmically unbounded on approaching a vertex of the magnet.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2522
Author(s):  
Guangdou Liu ◽  
Shiqin Hou ◽  
Xingping Xu ◽  
Wensheng Xiao

In the linear and planar motors, the 1D Halbach magnet array is extensively used. The sinusoidal property of the magnetic field deteriorates by analyzing the magnetic field at a small air gap. Therefore, a new 1D Halbach magnet array is proposed, in which the permanent magnet with a curved surface is applied. Based on the superposition of principle and Fourier series, the magnetic flux density distribution is derived. The optimized curved surface is obtained and fitted by a polynomial. The sinusoidal magnetic field is verified by comparing it with the magnetic flux density of the finite element model. Through the analysis of different dimensions of the permanent magnet array, the optimization result has good applicability. The force ripple can be significantly reduced by the new magnet array. The effect on the mass and air gap is investigated compared with a conventional magnet array with rectangular permanent magnets. In conclusion, the new magnet array design has the scalability to be extended to various sizes of motor and is especially suitable for small air gap applications.


1984 ◽  
Vol 110 ◽  
pp. 333-334
Author(s):  
J.A. Garcia-Barreto ◽  
B. F. Burke ◽  
M. J. Reid ◽  
J. M. Moran ◽  
A. D. Haschick

Magnetic fields play a major role in the general dynamics of astronomical phenomena and particularly in the process of star formation. The magnetic field strength in galactic molecular clouds is of the order of few tens of μG. On a smaller scale, OH masers exhibit fields of the order of mG and these can probably be taken as representative of the magnetic field in the dense regions surrounding protostars. The OH molecule has been shown to emit highly circular and linearly polarized radiation. That it was indeed the action of the magnetic field that would give rise to the highly polarized spectrum of OH has been shown by the VLBI observations of Zeeman pairs of the 1720 and 6035 MHz by Lo et. al. and Moran et. al. VLBI observations of W3 (OH) revealed that the OH emission was coming from numerous discrete locations and that all spots fell within the continuum contours of the compact HII region. The most detailed VLBI aperture synthesis experiment of the 1665 MHz emission from W3 (OH) was carried out by Reid et. al. who found several Zeeman pairs and a characteristic maser clump size of 30 mas. In this work, we report the results of a 5 station VLBI aperture synthesis experiment of the 1665 MHz OH emission from W3 (OH) with full polarization information. We produced VLBI synthesis maps of all Stokes parameters of 16 spectral features that showed elliptical polarization. The magnitude and direction of the magnetic field have been obtained by the detection of 7 Zeeman pairs. The three dimensional orientation of the magnetic field can be obtained, following the theoretical arguments of Goldreich et. al., from the observation of π and σ components.


Sign in / Sign up

Export Citation Format

Share Document