The potential predictability of Singapore and Maritime Continent weather regimes in relation to the MJO and ENSO

Author(s):  
Muhammad Eeqmal Hassim ◽  
Joshua Lee

<p><span>The Madden-Julian Oscillation (MJO) is a well-known source of predictability on sub-seasonal-to-seasonal (S2S) time scales and a major driver of intraseasonal weather variability around the globe. For example, the MJO’s interaction with and influence on daily regional weather in the Maritime Continent-Southeast Asia (MC-SEA) region is thought to be most pronounced during boreal winter (November through February), given that the amplitude of MJO activity is often much stronger during that period compared to other times of the year.</span></p><p><span>In this study, we examine the relationship of the MJO to eight weather regimes (WR) that have been previously defined for Singapore and the MC-SEA region using </span><em><span>k</span></em><span>-means clustering of daily sounding data from reanalysis. These weather regimes cover the whole annual cycle of rainfall with well-defined peak frequency times and mean spatial structures that correspond to the seasonal movement of the Inter-tropical Convergence Zone (ITCZ) across the Equator. Following previous work, we use a statistical method to compute the lagged relationship between each MJO phase and daily WR occurrence between December 1980 - November 2014 to quantify the </span><span>change in the likelihood</span><span> that a certain regime will occur relative to climatology, given an MJO phase in advance. Bimonthly analysis indicates that strong lag relationships exist between MJO phases and certain regimes in different two-month periods, thus giving potential predictability of the type of mean weekly weather in the MC-SEA up to 3-4 weeks ahead. In addition, we consider the modulation of the MJO-WR relationships stratified by the ENSO phase to determine whether the expected WR frequency response to MJO activity varies substantially in different background states.</span></p>

Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1049
Author(s):  
Xin Li ◽  
Ming Yin ◽  
Xiong Chen ◽  
Minghao Yang ◽  
Fei Xia ◽  
...  

Based on the observation and reanalysis data, the relationship between the Madden–Julian Oscillation (MJO) over the Maritime Continent (MC) and the tropical Pacific–Indian Ocean associated mode was analyzed. The results showed that the MJO over the MC region (95°–150° E, 10° S–10° N) (referred to as the MC–MJO) possesses prominent interannual and interdecadal variations and seasonally “phase-locked” features. MC–MJO is strongest in the boreal winter and weakest in the boreal summer. Winter MC–MJO kinetic energy variation has significant relationships with the El Niño–Southern Oscillation (ENSO) in winter and the Indian Ocean Dipole (IOD) in autumn, but it correlates better with the tropical Pacific–Indian Ocean associated mode (PIOAM). The correlation coefficient between the winter MC–MJO kinetic energy index and the autumn PIOAM index is as high as −0.5. This means that when the positive (negative) autumn PIOAM anomaly strengthens, the MJO kinetic energy over the winter MC region weakens (strengthens). However, the correlation between the MC–MJO convection and PIOAM in winter is significantly weaker. The propagation of MJO over the Maritime Continent differs significantly in the contrast phases of PIOAM. During the positive phase of the PIOAM, the eastward propagation of the winter MJO kinetic energy always fails to move across the MC region and cannot enter the western Pacific. However, during the negative phase of the PIOAM, the anomalies of MJO kinetic energy over the MC is not significantly weakened, and MJO can propagate farther eastward and enter the western Pacific. It should be noted that MJO convection is more likely to extend to the western Pacific in the positive phases of PIOAM than in the negative phases. This is significant different with the propagation of the MJO kinetic energy.


2020 ◽  
Vol 148 (12) ◽  
pp. 4957-4969
Author(s):  
Arun Kumar ◽  
Jieshun Zhu ◽  
Wanqiu Wang

AbstractIn this paper, the question of potential predictability in meteorological variables associated with skillful prediction of the Madden–Julian oscillation (MJO) during boreal winter is analyzed. The analysis is motivated by the fact that dynamical prediction systems are now capable of predicting MJO up to 30 days or earlier (measured in terms of anomaly correlation for RMM indices). Translating recent gains in MJO prediction skill and relating them back to potential for predicting meteorological variables—for example, precipitation and surface temperature—is not straightforward because of a chain of steps that go into the computation and evaluation of RMM indices. This paper assesses potential predictability in meteorological variables that could be attributed to skillful prediction of the MJO. The analysis is based on the observational data alone and assesses the upper limit of MJO-associated predictability that could be achieved.


2014 ◽  
Vol 27 (12) ◽  
pp. 4531-4543 ◽  
Author(s):  
J. M. Neena ◽  
June Yi Lee ◽  
Duane Waliser ◽  
Bin Wang ◽  
Xianan Jiang

Abstract The Madden–Julian oscillation (MJO) represents a primary source of predictability on the intraseasonal time scales and its influence extends from seasonal variations to weather and extreme events. While the last decade has witnessed marked improvement in dynamical MJO prediction, an updated estimate of MJO predictability from a contemporary suite of dynamic models, in conjunction with an estimate of their corresponding prediction skill, is crucial for guiding future research and development priorities. In this study, the predictability of the boreal winter MJO is revisited based on the Intraseasonal Variability Hindcast Experiment (ISVHE), a set of dedicated extended-range hindcasts from eight different coupled models. Two estimates of MJO predictability are made, based on single-member and ensemble-mean hindcasts, giving values of 20–30 days and 35–45 days, respectively. Exploring the dependence of predictability on the phase of MJO during hindcast initiation reveals a slightly higher predictability for hindcasts initiated from MJO phases 2, 3, 6, or 7 in three of the models with higher prediction skill. The estimated predictability of MJO initiated in phases 2 and 3 (i.e., convection in Indian Ocean with subsequent propagation across Maritime Continent) being equal to or higher than other MJO phases implies that the so-called Maritime Continent prediction barrier may not actually be an intrinsic predictability limitation. For most of the models, the skill for single-member (ensemble mean) hindcasts is less than the estimated predictability limit by about 5–10 days (15–25 days), implying that significantly more skillful MJO forecasts can be afforded through further improvements of dynamical models and ensemble prediction systems (EPS).


2017 ◽  
Vol 18 (8) ◽  
pp. 336-341 ◽  
Author(s):  
Gang Li ◽  
Jiepeng Chen ◽  
Xin Wang ◽  
Yanke Tan ◽  
Xiaohua Jiang

2017 ◽  
Vol 30 (23) ◽  
pp. 9725-9741 ◽  
Author(s):  
Wan-Ling Tseng ◽  
Huang-Hsiung Hsu ◽  
Noel Keenlyside ◽  
Chiung-Wen June Chang ◽  
Ben-Jei Tsuang ◽  
...  

This study uses the atmospheric general circulation model (AGCM) ECHAM5 coupled with the newly developed Snow–Ice–Thermocline model (ECHAM5-SIT) to examine the effects of orography and land–sea contrast on the Madden–Julian oscillation (MJO) in the Maritime Continent (MC) during boreal winter. The ECHAM5-SIT is one of the few AGCMs that realistically simulate the major characteristics of the MJO. Three experiments are conducted with realistic topography, without orography, and with oceans only in the MC region to evaluate the relative effects of orography and land–sea contrast. Orography and land–sea contrast have the following effects on the MJO in the MC: 1) a larger amplitude, 2) a smaller zonal scale, 3) more realistic periodicity and stronger eastward-propagating signals, 4) a stronger southward detour during the eastward propagation, 5) a distorted coupled Kelvin–Rossby wave structure, and 6) larger low-level moisture convergence. The existence of mountainous islands also enhances the mean westerly in the eastern Indian Ocean and the western MC, as well as the moisture content over the MC. This enhancement of mean states contributes to the stronger eastward-propagating MJO. The findings herein suggest that theoretical and empirical studies, which are largely derived from an aquaplanet framework, have likely provided an oversimplified view of the MJO. The effects of mountainous islands should be considered for better understanding and more accurate forecast of the MJO.


2017 ◽  
Vol 30 (6) ◽  
pp. 1909-1922 ◽  
Author(s):  
Seok-Woo Son ◽  
Yuna Lim ◽  
Changhyun Yoo ◽  
Harry H. Hendon ◽  
Joowan Kim

Abstract Interannual variation of seasonal-mean tropical convection over the Indo-Pacific region is primarily controlled by El Niño–Southern Oscillation (ENSO). For example, during El Niño winters, seasonal-mean convection around the Maritime Continent becomes weaker than normal, while that over the central to eastern Pacific is strengthened. Similarly, subseasonal convective activity, which is associated with the Madden–Julian oscillation (MJO), is influenced by ENSO. The MJO activity tends to extend farther eastward to the date line during El Niño winters and contract toward the western Pacific during La Niña winters. However, the overall level of MJO activity across the Maritime Continent does not change much in response to the ENSO. It is shown that the boreal winter MJO amplitude is closely linked with the stratospheric quasi-biennial oscillation (QBO) rather than with ENSO. The MJO activity around the Maritime Continent becomes stronger and more organized during the easterly QBO winters. The QBO-related MJO change explains up to 40% of interannual variation of the boreal winter MJO amplitude. This result suggests that variability of the MJO and the related tropical–extratropical teleconnections can be better understood and predicted by taking not only the tropospheric circulation but also the stratospheric mean state into account. The seasonality of the QBO–MJO link and the possible mechanism are also discussed.


2016 ◽  
Vol 73 (2) ◽  
pp. 579-604 ◽  
Author(s):  
Andrew J. Majda ◽  
Qiu Yang

Abstract The eastward-propagating Madden–Julian oscillation (MJO) typically exhibits complex behavior during its passage over the Maritime Continent, sometimes slowly propagating eastward and other times stalling and even terminating there with large amounts of rainfall. This is a huge challenge for present-day numerical models to simulate. One possible reason is the inadequate treatment of the diurnal cycle and its scale interaction with the MJO. Here these two components are incorporated into a simple self-consistent multiscale model that includes one model for the intraseasonal impact of the diurnal cycle and another one for the planetary/intraseasonal circulation. The latter model is forced self-consistently by eddy flux divergences of momentum and temperature from a model for the diurnal cycle with two baroclinic modes, which capture the intraseasonal impact of the diurnal cycle. The MJO is modeled as the planetary-scale circulation response to a moving heat source on the synoptic and planetary scales. The results show that the intraseasonal impact of the diurnal cycle during boreal winter tends to strengthen the westerlies (easterlies) in the lower (upper) troposphere in agreement with the observations. In addition, the temperature anomaly induced by the intraseasonal impact of the diurnal cycle can cancel that from the symmetric–asymmetric MJO with convective momentum transfer, yielding stalled or suppressed propagation of the MJO across the Maritime Continent. The simple multiscale model should be useful for the MJO in observations or more complex numerical models.


2016 ◽  
Vol 121 (22) ◽  
pp. 13,250-13,272 ◽  
Author(s):  
Yang Zhou ◽  
Youyu Lu ◽  
Ben Yang ◽  
Jing Jiang ◽  
Anning Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document