The three-dimensional ionospheric tomography in Japan by using the adaptive Kalman Filter algorithm

Author(s):  
Rui Song ◽  
Katsumi Hattori ◽  
Chie Yoshino

<p>  The three-dimensional (3-D) tomographic inversion is a crucial technique for imaging the ionospheric electron distributions (IEDs) on both the horizontal and vertical directions based on the total electron content (TEC) data. In this study, a regional 3-D tomography was realized in Japan using the Kalman Filter (KF) algorithm. In addition, to deduce the divergences, the adaptive Sage-Husa KF (SHKF) was proposed to determine the unknown priori information of the noise covariance encountered in the conventional KF (CKF). From this base, slant TEC (STEC) data observed by 55 GPS (Global Positioning System) receivers in the years of 2013 and 2018 was selected for IED reconstructions with the resolution 1º×1º×30 km in latitude, longitude and altitude, respectively. As for the ionospheric diurnal and annual variations, by comparing the F2 layer peak electron density (NmF2) simulated by SHKF, CKF, and the International Reference Ionosphere (IRI) model with the observed values detected by 4 Japanese ionosondes (Okinawa, Yamagawa, Kokubunji, and Wakkanai) during April 3-9, 2018 and 2013, the Root-Mean-Square-Error (RMSE) and co-releation index (ρ) were adopted to evaluate the simulated effciency. Results showed that the least RMSE (0.3084 in 2018, 0.5397 in 2013) and the best ρ values (0.9517 in 2018, 0.9896 in 2013) were both given by the SHKF-CIT method. Then, seasonal characteristics were implemented on January 02, March 20, June 14 and September 24, 2018, where the variations of northern EIA, winter and semiannual anomalies were accurately captured by the SHFK method. Meanwhile, the recalculated TEC values as well as the inverted vertical profiles manifested that SHKF-based tomography was outperformed the other methods. In the end, taking a strong geomagnetic storm happened on 26 August, 2018 as an example, both the meridional and latitudinal (along 135°E and 35°N, respectively) IEDs displayed more significant promotions than IRI model, and the results indicates that the IED around Japan developed by SHKF-based tomography is promising for the ionospheric studies and practical applications.</p>

2021 ◽  
Author(s):  
Ehsan Forootan ◽  
Mona Kosary ◽  
Saeed Farzaneh ◽  
Maike Schumacher

<p>The development of space-geodetic observation techniques has brought out a wide range of applications such as positioning and navigation, where the Global Navigation Satellite System (GNSS) is the main tools to provide surveying measurements in these applications. Though GNSS signals enable the calculation of receiver's position, some errors restrict their accuracy. Among these errors, the ionospheric delay is considered as an important error source in the Standard Point Positioning (SPP) applications. Empirical ionospheric models such as Klobuchar, International Reference Ionosphere (IRI), and NeQuick are often applied for computing the Total Electron Content (TEC) within ionosphere and its equivalent delays. However the simulation and forecasting skills of these models are limited due to the simplified model structures and model sensitivity to the calibration period. In this study, we present a novel sequential Calibration approach based on the Ensemble Kalman Filter (C-EnKF) to improve the performance of TEC estimations for SPP applications. To demonstrate the results, the IRI model is used as our basis and the TEC estimates from 56 IGS stations in Europe are applied as observation. The C-EnKF is applied to calibrate some selected model parameter so that IRI can be tuned over Europe. The numerical assessments are performed against the TEC estimates from dual frequency GNSS measurements and against the final IONEX products (that are available with 11 days delays). Based on the forecasting results (during September 2017), we show that the accuracy of TEC estimates from the C-EnKF is improved in the range of 3.7-64.87% compared to IRI. <strong>Keywords: </strong>Ionosphere, Sequential Calibration, Ensemble Kalman Filter (EnKF), IRI, Total Electron Content (TEC), Standard Point Positioning (SPP), GNSS</p>


2021 ◽  
Author(s):  
Nicholas Ssessanga ◽  
Mamoru Yamamoto ◽  
Susumu Saito

Abstract This paper demonstrates and assesses the capability of the advanced three- dimensional (3-D) ionosphere tomography technique, during severe conditions. The study area is northeast Asia and quasi-Japan-centred. Reconstructions are based on Total electron content data from a dense ground-based global navigation satellite system receiver network and parameters from operational ionosondes. We used observations from ionosondes, Swarm satellites and radio occultation (RO) to assess the 3-D picture. Specifically, we focus on St. Patrick’s day solar storm (17–19 March 2015), the most intense in solar cycle 24. During this event, the energy ingested into the ionosphere resulted in Dst and Kp and reaching values ~-223 nT and 8, respectively, and the region of interest, the East Asian sector, was characterized by a ~ 60% reduction in electron densities. Results show that the reconstructed densities follow the physical dynamics previously discussed in earlier publications about storm events. Moreover, even when ionosonde data were not available, the technique could still provide a consistent picture of the ionosphere vertical structure. Furthermore, analyses show that there is a profound agreement between the RO profiles/in-situ densities and the reconstructions. Therefore, the technique is a potential candidate for applications that are sensitive to ionospheric corrections.


Author(s):  
Adil Hussain ◽  
Munawar Shah

The international reference ionosphere (IRI) models have been widely used for correcting the ionospheric scintillations at different altitude levels. An evaluation on the performance of VTEC correction from IRI models (version 2007, 2012 and 2016) over Sukkur, Pakistan (27.71º N, 68.85º E) is presented in this work. Total Electron Content (TEC) from IRI models and GPS in 2019 over Sukkur region are compared. The main aim of this comparative analysis is to improve the VTEC in low latitude Sukkur, Pakistan. Moreover, this study will also help us to identify the credible IRI model for the correction of Global Positioning System (GPS) signal in low latitude region in future. The development of more accurate TEC finds useful applications in enhancing the extent to which ionospheric influences on radio signals are corrected. VTEC from GPS and IRI models are collected between May 1, 2019 and May 3, 2019. Additionally, Dst and Kp data are also compared in this work to estimate the geomagnetic storm variations. This study shows a good correlation of 0.83 between VTEC of GPS and IRI 2016. Furthermore, a correlation of 0.82 and 0.78 is also recorded for IRI 2012 and IRI 2007 respectively, with VTEC of GPS. The IRI TEC predictions and GPS-TEC measurements for the studied days reveal the potential of IRI model as a good candidate over Pakistan.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1243
Author(s):  
Nouf Abd Elmunim ◽  
Mardina Abdullah ◽  
Siti Aminah Bahari

Total electron content (TEC) is an important parameter in the ionosphere that is extensively used to study the variability of the ionosphere as it significantly affects radio wave propagations, causing delays on GPS signals. Therefore, evaluating the performance of ionospheric models is crucial to reveal the variety of ionospheric behaviour in different solar activity periods during geomagnetically quiet and disturbed periods for further improvements of the IRI model performance over the equatorial region. This research aimed to investigate the variations of ionospheric VTEC and observe the improvement in the performance of the IRI-2016 (IRI-2001, IRI01-corr, and NeQuick). The IRI-2016 was evaluated with the IRI-2012 using NeQuick, IRI-2001, and IRI01-corr topside electron density options. The data were obtained using a dual-frequency GPS receiver installed at the Universiti Utara Malaysia Kedah (UUMK) (geographic coordinates 4.62° N–103.21° E, geomagnetic coordinates 5.64° N–174.98° E), Mukhtafibillah (MUKH) (geographic coordinates 6.46° N–100.50° E, geomagnetic coordinates 3.32° S–172.99° E), and Tanjung Pengerang (TGPG) (geographic coordinates 1.36° N–104.10°E, geomagnetic coordinates 8.43° S–176.53° E) stations, during ascending to high solar activity at the geomagnetically quiet and disturbed periods in October 2011, March 2012, and March 2013. The maximum hourly ionospheric VTEC was observed during the post-noon time, while the minimum was during the early morning time. The ionospheric VTEC modelled by IRI-2016 had a slight improvement from the IRI-2012. However, the differences were observed during the post-noon and night-time, while the modelled VTEC from both IRI models were almost similar during the early morning time. Regarding the daily quiet and disturbed period’s prediction capability of the IRI-2016 and IRI-2012, IRI-2016 gave better agreement with the measured VTEC. The overall results showed that the model’s prediction performance during the high solar activity period in 2013 was better than the one during the ascending solar activity period. The results of the comparison between IRI-2016 and IRI-2012 in high solar activity exhibited that during quiet periods, all the IRI models showed better agreement with the measured VTEC compared to the disturbed periods.


2021 ◽  
Vol 6 (24) ◽  
pp. 152-160
Author(s):  
Siti Syukriah Khamdan ◽  
Tajul Ariffin Musa ◽  
Suhaila M. Buhari

This paper presents the detection of the equatorial plasma bubbles (EPB) using the Global Positioning System (GPS) ionospheric tomography method over Peninsular Malaysia. This paper aims to investigate the capability of the GPS ionospheric tomography method in detecting the variations of the EPB over the study area. In doing so, a previous case study during post-sunset 5th April 2011 has been selected as a reference for the detection of the EPBs over the study area. It has been observed that at least three structures of the EPBs have been captured based on the rate of change total electron content (TEC) index (ROTI) from 12 UT until 19 UT. Therefore, the three-dimensional ionospheric profiles have been reconstructed over Peninsular Malaysia using the tomography method during the study period in order to capture the signature of the EPBs. In this study, the detection of the EPBs using the tomography method is based on the rate of change of electron density (ROTNe). The results from three-dimensional ionospheric tomography show only two structures of EPBs are detected during the study period. It has been observed that the ROTNe depleted up to ~-12x109el/cm. Overall, the results in this study show that the GPS ionospheric tomography capable to be utilized in detecting the variations of EPBs in support of ionospheric studies and monitoring in the Malaysian region.


2021 ◽  
Author(s):  
Sharat chandra Bhardwaj ◽  
Anurag Vidyarthi ◽  
Bhajan Singh Jassal ◽  
Ashish kumar Shukla

Abstract For the precise positioning application it is important to determine and eliminate the positioning error introduced by various sources such as the ionosphere. To develop a standalone precise navigation system, India has launched the seven satellite constellations of NavIC (Navigation with Indian Constellation) system to provide precision positioning over India and surrounded landmass. Since the ionospheric delay depends on the frequency of the satellite signal and NavIC systems work at different frequencies (L5 and S1) than GPS systems (L1 and L2), it is not possible to use the GPS data-driven study for NavIC based location calculations directly. Thus there is a need for a specialized ionospheric study for NavIC systems. In addition, the ionospheric delay is directly proportional to Slant Total Electron Content (STEC) which is dependent upon diurnal and seasonal solar activity. To achieve accurate positioning facilities, there is also a need for evaluation for seasonal variability of ionospheric delay correction for NavIC receivers. This paper deals with the STEC estimation; its smoothing, and removal of instrumental biases from STEC. The determined true STEC has been used to determine first-order ionospheric delay at L5 and S1 frequencies. The delay at S1 has been found less (2 to 7m) as compared to L5 (10 to 30m). Furthermore, the seasonal variability of ionospheric delay has been analyzed using about 19 months of data (from June 2017 to December 2018) and found that the ionospheric delay follows unique seasonal characteristics which can be utilized for delay modeling. It has been also observed that the geostationary satellites of the NavIC system are more appropriate than geosynchronous satellites for ionospheric related studies.


2021 ◽  
Author(s):  
Eren Erdogan ◽  
Andreas Goss ◽  
Michael Schmidt ◽  
Denise Dettmering ◽  
Florian Seitz ◽  
...  

<p>The project OPTIMAP is at the current stage a joint initiative of BGIC, GSSAC and DGFI-TUM. The development of an operational tool for ionospheric mapping and prediction is the main goal of the project.</p><p>The ionosphere is a dispersive medium. Therefore, GNSS signals are refracted while they pass through the ionosphere. The magnitude of the refraction rate depends on the frequencies of the transmitted GNSS signals. The ionospheric disturbance on the GNSS signals paves the way of extracting Vertical Total Electron Content (VTEC) information of the ionosphere.</p><p>In OPTIMAP, the representation of the global and regional VTEC signal is based on localizing B-spline basis functions. For global VTEC modeling, polynomial B-splines are employed to represent the latitudinal variations, whereas trigonometric B-splines are used for the longitudinal variations. The regional modeling in OPTIMAP relies on a polynomial B-spline representation for both latitude and longitude.</p><p>The VTEC modeling in this study relies on both a global and a regional sequential estimator (Kalman filter) running in a parallel mode. The global VTEC estimator produces VTEC maps based on data from GNSS receiver stations which are mainly part of the global real-time IGS network. The global estimator relies on additional VTEC information obtained from a forecast procedure using ultra-rapid VTEC products. The regional estimator makes use of the VTEC product of the real-time global estimator as background information and generates high-resolution VTEC maps using real-time data from the EUREF Permanent GNSS Network. EUREF provides a network of very dense GNSS receivers distributed alongside Europe.</p><p>Carrier phase observations acquired from GPS and GLONASS, which are transmitted in accordance with RTCM standard, are used for real-time regional VTEC modeling. After the acquisition of GNSS data, cycle slips for each satellite-receiver pair are detected, and ionosphere observations are constructed via the linear combination of carrier-phase observations in the data pre-processing step. The unknown B-spline coefficients, as well as the biases for each phase-continuous arc belonging to each receiver-satellite pair, are simultaneously estimated in the Kalman filter.</p><p>Within this study, we compare the performance of regional and global VTEC products generated in real-time using the well-known dSTEC analysis.</p>


2019 ◽  
Vol 9 ◽  
pp. A30 ◽  
Author(s):  
Sean Elvidge ◽  
Matthew J. Angling

The Advanced Ensemble electron density (Ne) Assimilation System (AENeAS) is a new data assimilation model of the ionosphere/thermosphere. The background model is provided by the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIE-GCM) and the assimilation uses the local ensemble transform Kalman filter (LETKF). An outline derivation of the LETKF is provided and the equations are presented in a form analogous to the classic Kalman filter. An enhancement to the efficient LETKF implementation to reduce computational cost is also described. In a 3 day test in June 2017, AENeAS exhibits a total electron content (TEC) RMS error of 2.1 TECU compared with 5.5 TECU for NeQuick and 6.8 for TIE-GCM (with an NeQuick topside).


Sign in / Sign up

Export Citation Format

Share Document