Development of Web GIS based Surface Soil Erosion Prediction System

Author(s):  
Dongjun Lee ◽  
Jae E Yang ◽  
Kyoung Jae Lim ◽  
Jonggun Kim ◽  
Won Seok Jang

<p>This study is to develop the Web GIS-based surface soil erosion prediction system that informs soil information such as daily potential soil erosion, soil quality, and best management practices (BMPs). The system involves three functions that are: 1) to predict daily potential soil erosion in the study areas (e.g., Jaun-Cheon, Bukhan-Gang, Namhan-Gang, and Gyoungan-Cheon); 2) to provide the current levels of soil qualities at field scale; 3) to recommend BMPs which can improve soil qualities. This study developed a module based on MUSLE and assessed the availability of the module comparing with the measured data at sample fields (3%, 9% slope). After verification of the module, the Web GIS-based system was developed using a user-friendly interface. The users can obtain the visualized soil erosion information through the interface and compare the amount of soil erosion using the single field or multi-fields analysis tool developed in this study. Moreover, the users can find the current level of soil qualities at fields they selected and gain various applicable BMPs information. The system enables to inform non-experts to soil information without using a complex model and equation. Therefore, the system can play a significant role in recognizing the importance of soil resources and enacting laws relative to soil conservation.</p>

Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 650
Author(s):  
Wakjira Takala Dibaba ◽  
Tamene Adugna Demissie ◽  
Konrad Miegel

Excessive soil loss and sediment yield in the highlands of Ethiopia are the primary factors that accelerate the decline of land productivity, water resources, operation and function of existing water infrastructure, as well as soil and water management practices. This study was conducted at Finchaa catchment in the Upper Blue Nile basin of Ethiopia to estimate the rate of soil erosion and sediment loss and prioritize the most sensitive sub-watersheds using the Soil and Water Assessment Tool (SWAT) model. The SWAT model was calibrated and validated using the observed streamflow and sediment data. The average annual sediment yield (SY) in Finchaa catchment for the period 1990–2015 was 36.47 ton ha−1 yr−1 with the annual yield varying from negligible to about 107.2 ton ha−1 yr−1. Five sub-basins which account for about 24.83% of the area were predicted to suffer severely from soil erosion risks, with SY in excess of 50 ton ha−1 yr−1. Only 15.05% of the area within the tolerable rate of loss (below 11 ton ha−1yr−1) was considered as the least prioritized areas for maintenance of crop production. Despite the reasonable reduction of sediment yields by the management scenarios, the reduction by contour farming, slope terracing, zero free grazing and reforestation were still above the tolerable soil loss. Vegetative contour strips and soil bund were significant in reducing SY below the tolerable soil loss, which is equivalent to 63.9% and 64.8% reduction, respectively. In general, effective and sustainable soil erosion management requires not only prioritizations of the erosion hotspots but also prioritizations of the most effective management practices. We believe that the results provided new and updated insights that enable a proactive approach to preserve the soil and reduce land degradation risks that could allow resource regeneration.


Author(s):  
Félicien Majoro ◽  
Umaru Garba Wali ◽  
Omar Munyaneza ◽  
François-Xavier Naramabuye ◽  
Concilie Mukamwambali

Soil erosion is an environmental concern that affects agriculture, wildlife and water bodies. Soil erosion can be avoided by maintaining a protective cover on the soil to create a barrier to the erosive agent or by modifying the landscape to control runoff amounts and rates. This research is focused on Sebeya catchment located in the Western Province of Rwanda. Sebeya catchment is one of the most affected areas by soil erosion hazards causing loss of crops due to the destruction of agricultural plots or riverbanks, river sedimentation and damages to the existing water treatment and hydropower plants in the downstream part of the river. The aims of this research were to assess the performance of erosion remediation measures and to propose the Best Management Practices (BMPs) for erosion control in Sebeya catchment. Using literature review, site visits, questionnaire and interviews, various erosion control measures were analyzed in terms of performance and suitability. Land slope and soil depth maps were generated using ArcGIS software. The interview results indicated that among the 22 existing soil erosion control measures, about 4.57% of farmers confirmed their existence while 95.43% expressed the need of their implementation in Sebeya catchment. Furthermore, economic constraints were found to be the main limitative factors against the implementation of soil erosion control measures in Sebeya catchment. Also, the majority of farmers suggest trainings and mobilization of a specialized technical team to assist them in implementing soil conservation measures and to generalize the application of fertilizers in the whole catchment. Finally, soil erosion control measures including agro-forestry, terraces, mulching, tree planting, contour bunds, vegetative measures for slopes and buffer zones, check dams, riverbanks stabilization were proposed and recommended to be implemented in Sebeya catchment. Keywords: Erosion control measures, Sebeya catchment, Rwanda


2021 ◽  
Vol 64 (6) ◽  
pp. 1835-1848
Author(s):  
Manal H. Askar ◽  
Mohamed A. Youssef ◽  
Peter A. Vadas ◽  
Dean L. Hesterberg ◽  
Aziz Amoozegar ◽  
...  

HighlightsDRAINMOD-P has been developed to simulate phosphorus (P) dynamics in drained croplands.Key hydrological and biochemical processes affecting P cycling are represented in the model.The model predicts surface and subsurface P losses as affected by weather, soil, and management factors.Abstract. High phosphorus (P) loads to streams and lakes can promote harmful algae blooms and cause water quality deterioration. Recent research has identified subsurface drainage as an important pathway for the transport of dissolved P from drained croplands to receiving surface water bodies, particularly when macropore flow contributes a considerable portion of the subsurface drainage outflow. Currently, a few models are capable of simulating P dynamics in poorly drained soils with artificial drainage systems. The objective of this study was to develop DRAINMOD-P, a field-scale, process-based model that simulates P cycling and transport in drained croplands. Processes represented in the model include atmospheric deposition, organic and inorganic fertilizer applications, plant uptake, sediment-bound and dissolved P losses in both surface runoff and subsurface drainage, tillage practices, and P mineralization and immobilization. The model predicts P losses under different management practices, climatic conditions, drainage systems, and crop rotations. The model is an extension to the nitrogen model DRAINMOD-NII, with full integration of the nitrogen and P model components. DRAINMOD-P uses the recently modified hydrology component that simulates macropore flow. A soil erosion component, based on the RUSLE approach, has been incorporated into the model to estimate sediment loss and associated particulate P loss. Sediment deposition in tile drains is considered to quantify particulate P settling in the drainage system. In this article, we review the approaches used in DRAINMOD-P for simulating P-related processes. Model testing against field-measured data from a subsurface-drained field in northwest Ohio is presented in a companion article. Keywords: Best management practices, Phosphorus model, Phosphorus processes, Soil erosion, Water quality modeling.


2010 ◽  
Vol 90 (2) ◽  
pp. 331-340 ◽  
Author(s):  
J J Miller ◽  
T W Curtis ◽  
E. Bremer ◽  
D S Chanasyk ◽  
W D Willms

Off-stream watering troughs may reduce surface water pollution by keeping nutrients away from natural water bodies, but may increase nutrient contaminant of groundwater. The objective of this study was to determine to what extent off-stream watering troughs active for 2 to 7 yr caused enrichment and leaching of soil test P (STP) and KCl-extractable NO3-N. The study was conducted in the Lower Little Bow (LLB) River watershed of southern Alberta, Canada. Soil samples were obtained at three recently installed off-stream watering troughs, four active cattle watering sites adjacent to the LLB River, and at two sites along a fenced reach of the river with no cattle access. At each location, samples were obtained along four 100-m transects. Surface (0-5 cm) soil immediately adjacent to the LLB River was not enriched in STP or NO3-N, which was attributed to flushing of nutrients during periods of high flow. Surface soil at distances ≤ 5 m from the three water troughs was approximately three times higher in STP than surface soil obtained at distances ≥10 m and was seven times higher in NO3-N. Subsurface soil layers adjacent (3 m distance) to the three water troughs were not enriched in STP compared with background levels (100 m distance). The subsurface soil adjacent (3 m) to the longest active watering trough was enriched in NO3-N to the 60 cm depth compared with background levels (100 m). Greater nutrient enrichment at the off-stream watering troughs than at the cattle watering sites adjacent to the river suggested that this beneficial management practice (BMP) was effective in shifting nutrient distribution away from the river. Key words: Pasture, nutrient leaching, nitrate, best management practices


2020 ◽  
Vol 13 (1) ◽  
pp. 232
Author(s):  
Susanta Das ◽  
Proloy Deb ◽  
Pradip Kumar Bora ◽  
Prafull Katre

Soil erosion from arable lands removes the top fertile soil layer (comprised of humus/organic matter) and therefore requires fertilizer application which affects the overall sustainability. Hence, determination of soil erosion from arable lands is crucial to planning conservation measures. A modeling approach is a suitable alternative to estimate soil loss in ungauged catchments. Soil erosion primarily depends on soil texture, structure, infiltration, topography, land uses, and other erosive forces like water and wind. By analyzing these parameters, coupled with geospatial tools, models can estimate storm wise and annual average soil losses. In this study, a hilly watershed called Nongpoh was considered with the objective of prioritizing critical erosion hazard areas within the micro-catchment based on average annual soil loss and land use and land cover and making appropriate management plans for the prioritized areas. Two soil erosion models namely Revised Universal Soil Loss Equation (RUSLE) and Modified Morgan–Morgan–Finney (MMF) models were used to estimate soil loss with the input parameters extracted from satellite information and automatic weather stations. The RUSLE and MMF models showed similar results in estimating soil loss, except the MMF model estimated 7.74% less soil loss than the RUSLE model from the watershed. The results also indicated that the study area is under severe erosion class, whereas agricultural land, open forest area, and scrubland were prioritized most erosion prone areas within the watershed. Based on prioritization, best management plans were developed at catchment scale for reducing soil loss. These findings and the methodology employed can be widely used in mountainous to hilly watersheds around the world for identifying best management practices (BMP).


2010 ◽  
Vol 7 (4) ◽  
pp. 5685-5735
Author(s):  
M. A. Kabir ◽  
D. Dutta ◽  
S. Hironaka

Abstract. Modeling of sediment dynamics for developing best management practices of reducing soil erosion and of sediment control has become essential for sustainable management of watersheds. Precise estimation of sediment dynamics is very important since soils are a major component of enormous environmental processes and sediment transport controls lake and river pollution extensively. Different hydrological processes govern sediment dynamics in a river basin, which are highly variable in spatial and temporal scales. This paper presents a process-based distributed modeling approach for analysis of sediment dynamics at river basin scale by integrating sediment processes (soil erosion, sediment transport and deposition) with an existing process-based distributed hydrological model. In this modeling approach, the watershed is divided into an array of homogeneous grids to capture the catchment spatial heterogeneity. Hillslope and river sediment dynamic processes have been modeled separately and linked to each other consistently. Water flow and sediment transport at different surface grids and river nodes are modeled using one-dimensional kinematic wave approximation of Saint-Venant equations. The mechanics of sediment dynamics are integrated into the model using representative physical equations after a comprehensive review. The model has been tested on river basins in two different hydro climatic areas, the Abukuma River Basin, Japan and Latrobe River Basin, Australia. Sediment transport and deposition are modeled using Govers transport capacity equation. All spatial datasets, such as, Digital Elevation Model (DEM), land use and soil classification data, etc., have been prepared using raster "Geographic Information System (GIS)" tools. The results of relevant statistical checks (Nash-Sutcliffe efficiency and R-squared value) indicate that the model simulates basin hydrology and its associated sediment dynamics reasonably well. This paper presents the model including descriptions of the various components and the results of its application on case study areas.


1987 ◽  
Vol 19 (2) ◽  
pp. 21-32 ◽  
Author(s):  
William M. Park ◽  
David G. Sawyer

AbstractThis article reports on analyses of the cost effectiveness of three soil erosion control policy alternatives, specifically 1) uniform-rate cost sharing, 2) variable-rate cost sharing, and 3) fixed subsidy payments per unit reduction in erosion. A brief discussion of the place of these alternative subsidy strategies within the context of the current policy environment is presented. Integer programming is employed to simulate adoption of “best management practices” (BMPs) on a set of representative farms in a case study water-shed in response to these alternative subsidy strategies. Conclusions and policy implications are outlined.


2021 ◽  
Vol 13 (16) ◽  
pp. 9456
Author(s):  
Devendra Kumar ◽  
Arvind Dhaloiya ◽  
Ajeet Singh Nain ◽  
Mahendra Paal Sharma ◽  
Amandeep Singh

Soil erosion is becoming a major concern at the watershed scale for the environment, natural resources, and sustainable resource management. Therefore, the estimation of soil loss through this phenomenon and the identification of critical soil erosion-prone areas are considered to be key tasks in the soil conservation programme for the design and implementation of best management practices for specific regions or areas. In the present study, revised universal soil loss equation (RUSLE) modelling is combined with remote sensing (RS) and geographical information system (GIS) techniques and used to predict soil erosion and the prioritization of watersheds in Nainital district Uttarakhand, India. For the estimation of soil loss, different factors, namely, rainfall-runoff erosivity (R) factor, soil erodability (K) factor, slope length steepness (LS) factor, cover management (C) factor, and the erosion control practices (P) factor were computed. The data on various other aspects such as land use/land cover (LU/LC), the digital elevation model (DEM), slope, contours, drainage network, soil texture, organic matter, and rainfall were integrated to prepare a database for the RUSLE equation by employing ENVI & QGIS software. The results showed that a major portion (70.26%) of Nainital district is covered with forest, followed by area under fallow and agricultural land. Annual average soil loss ranged between 20 to 80 t ha−1 yr−1 in the study area. Out of 50 watersheds in the study area, 7 watersheds were given top priority for conserving natural resources, while 11 watersheds, mostly in the east-central part of Nainital, were kept under the next priority category. Only 4 watersheds of the total were given lowest priority. Moreover, it was concluded that major portions of Nainital district were in a severely prone category of soil erosion, and therefore required immediate action plans to check soil erosion and evade the possibility of landslides.


Sign in / Sign up

Export Citation Format

Share Document