Convection-permitting present-day climatological simulation with WRF over Bavaria

Author(s):  
Emily Collier ◽  
Thomas Mölg

<p>Climate impact assessments require information about climate change at regional and ideally local scales. Traditionally, this information has been obtained using statistical methods, precluding the linkage of local climate changes to large-scale drivers in a process-based way. As part of recent efforts to investigate the impact of climate change on forest ecosystems in Bavaria, Germany, within the BayTreeNet project, we developed a high-resolution atmospheric modelling dataset, BAYWRF, for the region of Bavaria over the thirty-year period of September 1987 to August 2018. The open-source community-developed atmospheric model employed in this study, WRF, was configured with two nested domains of 7.5- and 1.5-km grid spacing centered over Bavaria and forced at the outer lateral boundaries by ERA5 reanalysis data. Based on a shorter evaluation period of September 2017 to August 2018, we evaluate two aspects of the simulations: (i) we investigate the influence of using grid-analysis nudging; and (ii) we assess model biases compared with an extensive observational data at both two-hourly and daily mean temporal resolutions. Then, we present a brief overview of the full dataset, which will provide a unique and valuable tool for investigating climate change in Bavaria with high interdisciplinary relevance. Minimally subsetted data from the finest resolution WRF domain are available for download at daily temporal resolution from a public repository at the Open Science Foundation.</p>

2020 ◽  
Author(s):  
Emily Collier ◽  
Thomas Mölg

Abstract. Climate impact assessments require information about climate change at regional and ideally local scales. In dendroecological studies, this information has traditionally been obtained using statistical methods, which preclude the linkage of local climate changes to large-scale drivers in a process-based way. As part of recent efforts to investigate the impact of climate change on forest ecosystems in Bavaria, Germany, within the BayTreeNet project, we developed a high-resolution atmospheric modelling dataset, BAYWRF, for the region of Bavaria over the thirty-year period of September 1987 to August 2018. The atmospheric model employed in this study, WRF, was configured with two nested domains of 7.5- and 1.5-km grid spacing, centred over Bavaria and forced at the outer lateral boundaries by ERA5 reanalysis data. Based on a shorter evaluation period of September 2017 to August 2018, we evaluate two aspects of the simulations: (i) we assess model biases compared with an extensive network of observational data at both two-hourly and daily mean temporal resolutions, and (ii) we investigate the influence of using grid analysis nudging. The model represents variability in near-surface meteorological conditions well, with a clear improvement when nudging is used, although there are cold and warm biases in winter and summer, respectively. We also present a brief overview of the full dataset, which will provide a unique and valuable tool for investigating climate change in Bavaria with high interdisciplinary relevance. Data from the finest resolution WRF domain are available for download at daily temporal resolution from a public repository at the Open Science Framework (Collier, 2020; https://www.doi.org/10.17605/OSF.IO/AQ58B).


2020 ◽  
Vol 12 (4) ◽  
pp. 3097-3112
Author(s):  
Emily Collier ◽  
Thomas Mölg

Abstract. Climate impact assessments require information about climate change at regional and ideally also local scales. In dendroecological studies, this information has traditionally been obtained using statistical methods, which preclude the linkage of local climate changes to large-scale drivers in a process-based way. As part of recent efforts to investigate the impact of climate change on forest ecosystems in Bavaria, Germany, we developed a high-resolution atmospheric modelling dataset, BAYWRF, for this region over the thirty-year period of September 1987 to August 2018. The atmospheric model employed in this study, the Weather Research and Forecasting (WRF) model, was configured with two nested domains of 7.5 and 1.5 km grid spacing centred over Bavaria and forced at the outer lateral boundaries by ERA5 reanalysis data. Using an extensive network of observational data, we evaluate (i) the impact of using grid analysis nudging for a single-year simulation of the period of September 2017 to August 2018 and (ii) the full BAYWRF dataset generated using nudging. The evaluation shows that the model represents variability in near-surface meteorological conditions generally well, although there are both seasonal and spatial biases in the dataset that interested users should take into account. BAYWRF provides a unique and valuable tool for investigating climate change in Bavaria with high interdisciplinary relevance. Data from the finest-resolution WRF domain are available for download at daily temporal resolution from a public repository at the Open Science Framework (Collier, 2020; https://doi.org/10.17605/OSF.IO/AQ58B).


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Dörthe Handorf ◽  
Klaus Dethloff ◽  
Sabine Erxleben ◽  
Ralf Jaiser ◽  
Michael V. Kurgansky

A quasi-geostrophic three-level T63 model of the wintertime atmospheric circulation of the Northern Hemisphere has been applied to investigate the impact of Arctic amplification (increase in surface air temperatures and loss of Arctic sea ice during the last 15 years) on the mid-latitude large-scale atmospheric circulation. The model demonstrates a mid-latitude response to an Arctic diabatic heating anomaly. A clear shift towards a negative phase of the Arctic Oscillation (AO−) during low sea-ice-cover conditions occurs, connected with weakening of mid-latitude westerlies over the Atlantic and colder winters over Northern Eurasia. Compared to reanalysis data, there is no clear model response with respect to the Pacific Ocean and North America.


2021 ◽  
Vol 22 (3) ◽  
pp. 353-361
Author(s):  
NAVEEN P. SINGH ◽  
BHAWNA ANAND ◽  
K.V. RAO ◽  
RANJITH P.C.

Using large-scale district-level data, the study examined the impact of climate change on crop yields during the period 1966-2011and predictsthe likely changes in yield sacross agro-climatic zones in Plateau Region. The future projections reveal that by 2080s, cotton yield is expected to decline by 7.18 percent in Western Plateau & Hills.By the end of the century, sorghum yield is projected to decline up to 19 percent in Central Plateau & Hills and increase by 18 percent in Western Plateau & Hills. Under midterm period, rapeseed & mustard yield is likely to reduce by 3.44 percent in Western Plateau & Hills. By 2050s maize yield is expected to reduce by 3.33 percent in Central Plateau & Hills. By 2080s, wheat yield is projected to decline by 5.44, percent in SouthernPlateau & Hills. The results suggest that impact of climate change on crop yield varies across regions, hence it is pertinent to formulate adaptation strategies and farm practices suitable to the crop and location specific needs that mitigate the likely exposure of food production and livelihoods to climate variations.


2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


2020 ◽  
Vol 45 (1) ◽  
pp. 411-444 ◽  
Author(s):  
Valéry Masson ◽  
Aude Lemonsu ◽  
Julia Hidalgo ◽  
James Voogt

Cities are particularly vulnerable to extreme weather episodes, which are expected to increase with climate change. Cities also influence their own local climate, for example, through the relative warming known as the urban heat island (UHI) effect. This review discusses urban climate features (even in complex terrain) and processes. We then present state-of-the-art methodologies on the generalization of a common urban neighborhood classification for UHI studies, as well as recent developments in observation systems and crowdsourcing approaches. We discuss new modeling paradigms pertinent to climate impact studies, with a focus on building energetics and urban vegetation. In combination with regional climate modeling, new methods benefit the variety of climate scenarios and models to provide pertinent information at urban scale. Finally, this article presents how recent research in urban climatology contributes to the global agenda on cities and climate change.


Author(s):  
Michalis I. Vousdoukas ◽  
Dimitrios Bouziotas ◽  
Alessio Giardino ◽  
Laurens M. Bouwer ◽  
Evangelos Voukouvalas ◽  
...  

Abstract. An upscaling of flood risk assessment frameworks beyond regional and national scales has taken place during recent years, with a number of large-scale models emerging as tools for hotspot identification, support for international policy-making and harmonization of climate change adaptation strategies. There is, however, limited insight on the scaling effects and structural limitations of flood risk models and, therefore, the underlying uncertainty. In light of this, we examine key sources of epistemic uncertainty in the Coastal Flood Risk (CFR) modelling chain: (i) the inclusion and interaction of different hydraulic components leading to extreme sea-level (ESL); (ii) inundation modelling; (iii) the underlying uncertainty in the Digital Elevation Model (DEM); (iv) flood defence information; (v) the assumptions behind the use of depth-damage functions that express vulnerability; and (vi) different climate change projections. The impact of these uncertainties to estimated Expected Annual Damage (EAD) for present and future climates is evaluated in a dual case study in Faro, Portugal and in the Iberian Peninsula. The ranking of the uncertainty factors varies among the different case studies, baseline CFR estimates, as well as their absolute/relative changes. We find that uncertainty from ESL contributions, and in particular the way waves are treated, can be higher than the uncertainty of the two greenhouse gas emission projections and six climate models that are used. Of comparable importance is the quality of information on coastal protection levels and DEM information. In the absence of large-extent datasets with sufficient resolution and accuracy the latter two factors are the main bottlenecks in terms of large-scale CFR assessment quality.


2011 ◽  
Vol 8 (2) ◽  
pp. 2235-2262
Author(s):  
E. Joigneaux ◽  
P. Albéric ◽  
H. Pauwels ◽  
C. Pagé ◽  
L. Terray ◽  
...  

Abstract. Under certain hydrological conditions it is possible for spring flow in karst systems to be reversed. When this occurs, the resulting invasion by surface water, i.e. the backflooding, represents a serious threat to groundwater quality because the surface water could well be contaminated. Here we examine the possible impact of future climate change on the occurrences of backflooding in a specific karst system, having first established the occurrence of such events in the selected study area over the past 40 yr. It would appear that backflooding has been more frequent since the 1980s, and that it is apparently linked to river flow variability on the pluri-annual scale. The avenue that we adopt here for studying recent and future variations of these events is based on a downscaling algorithm relating large-scale atmospheric circulation to local precipitation spatial patterns. The large-scale atmospheric circulation is viewed as a set of quasi-stationary and recurrent states, called weather types, and its variability as the transition between them. Based on a set of climate model projections, simulated changes in weather-type occurrence for the end of the century suggests that backflooding events can be expected to decrease in 2075–2099. If such is the case, then the potential risk for groundwater quality in the area will be greatly reduced compared to the current situation. Finally, our results also show the potential interest of the weather-type based downscaling approach for examining the impact of climate change on hydrological systems.


2016 ◽  
Vol 31 (1) ◽  
pp. 87-96 ◽  
Author(s):  
Angela B. Kuriata-Potasznik ◽  
Sławomir Szymczyk

AbstractIt is predicted that climate change will result in the diminution of water resources available both on global and regional scales. Local climate change is harder to observe and therefore, while counteracting its effects, it seems advisable to undertake studies on pertinent regional and local conditions. In this research, our aim was to assess the impact of a river and its catchment on fluctuations in the water availability in a natural lake which belongs to a post-glacial river and lake system. River and lake systems behave most often like a single interacting hydrological unit, and the intensity of water exchange in these systems is quite high, which may cause temporary water losses. This study showed that water in the analyzed river and lake system was exchanged approx. every 66 days, which resulted from the total (horizontal and vertical) water exchange. Also, the management of a catchment area seems to play a crucial role in the local water availability, as demonstrated by this research, where water retention was favoured by wooded and marshy areas. More intensive water retention was observed in a catchment dominated by forests, pastures and wetlands. Wasteland and large differences in the land elevation in the tested catchment are unfavourable to water retention because they intensify soil evaporation and accelerate the water run-off outside of the catchment. Among the actions which should be undertaken in order to counteract water deficiencies in catchment areas, rational use and management of the land resources in the catchment are most often mentioned.


2013 ◽  
Vol 13 (12) ◽  
pp. 31891-31932 ◽  
Author(s):  
R. Paoli ◽  
O. Thouron ◽  
J. Escobar ◽  
J. Picot ◽  
D. Cariolle

Abstract. Large-eddy simulations of sub-kilometer-scale turbulence in the upper troposphere lower stratosphere (UTLS) are carried out and analyzed using the mesoscale atmospheric model Méso-NH. Different levels of turbulence are generated using a large-scale stochastic forcing technique that was especially devised to treat atmospheric stratified flows. The study focuses on the analysis of turbulence statistics, including mean quantities and energy spectra, as well as on a detailed description of flow topology. The impact of resolution is also discussed by decreasing the grid spacing to 2 m and increasing the number of grid points to 8×109. Because of atmospheric stratification, turbulence is substantially anisotropic, and large elongated structures form in the horizontal directions, in accordance with theoretical analysis and spectral direct numerical simulations of stably stratified flows. It is also found that the inertial range of horizontal kinetic energy spectrum, generally observed at scales larger than a few kilometers, is prolonged into the sub-kilometric range, down to the Ozmidov scales that obey isotropic Kolmorogov turbulence. The results are in line with observational analysis based on in situ measurements from existing campaigns.


Sign in / Sign up

Export Citation Format

Share Document