scholarly journals Spatial and temporal assessment of climate impact on agriculture in plateau region, India

2021 ◽  
Vol 22 (3) ◽  
pp. 353-361
Author(s):  
NAVEEN P. SINGH ◽  
BHAWNA ANAND ◽  
K.V. RAO ◽  
RANJITH P.C.

Using large-scale district-level data, the study examined the impact of climate change on crop yields during the period 1966-2011and predictsthe likely changes in yield sacross agro-climatic zones in Plateau Region. The future projections reveal that by 2080s, cotton yield is expected to decline by 7.18 percent in Western Plateau & Hills.By the end of the century, sorghum yield is projected to decline up to 19 percent in Central Plateau & Hills and increase by 18 percent in Western Plateau & Hills. Under midterm period, rapeseed & mustard yield is likely to reduce by 3.44 percent in Western Plateau & Hills. By 2050s maize yield is expected to reduce by 3.33 percent in Central Plateau & Hills. By 2080s, wheat yield is projected to decline by 5.44, percent in SouthernPlateau & Hills. The results suggest that impact of climate change on crop yield varies across regions, hence it is pertinent to formulate adaptation strategies and farm practices suitable to the crop and location specific needs that mitigate the likely exposure of food production and livelihoods to climate variations.

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Mamadou Abdoulaye KONTE ◽  
Gnalenba ABLOUKA ◽  
Paoli BEHANZIN

The main objective of this research is to evaluate the impact of climate change on food crop yields in Senegal using the Factor Augmented Vector Auto Regression (FAVAR) approach. The estimation method used is principal components analysis. We identified two major shocks representative of climate change. The first is an increase of temperature (thermal shock) and the second is a decrease in the quantity of precipitation (rainfall shock). The data covers the period 1970-2014 and each of the shocks is carried out over the prior year. The impact of each shock is observed along a time horizon of 10 years. The results show a positive impact of the thermal shock on the yields of rice, maize and millet, with a much greater impact on rice and maize yield. Rising temperatures are, however, detrimental to sorghum. A decline in rainfall has a negative impact on the yields of all cereals, which is in line with expectations.


2021 ◽  
Vol 21 (4) ◽  
pp. 452-461
Author(s):  
NAVEEN P. SINGH ◽  
SURENDRA SINGH ◽  
BHAWNA ANAND ◽  
P.C. Ranjith

Against the increasing vulnerability of agriculture and farm livelihoods to climate change, the study attempted to analyse the trend in climate variables and their impact on major crop yields during the period from 1966-2011, across 4 agro-climatic zones forming Gangetic Plains Region. A rising trend was observed in annual and seasonal (kharif and rabi) mean maximum and minimum temperature across the zones. Rainfall on the other hand, showed a declining trend. Overall, climate change adversely impacted crop yield, but the magnitudes of such effects vary spatially. The results reveal that rice and wheat yield will decline in the entire Gangetic region. By 2050s, maize yield will be higher by 6 percent in Lower Gangetic Plains; pearl millet will increase by 15 percent and rapeseed & mustard by 3.8 percent in Trans-Gangetic Plains. Amongst the crops, sugarcane yield was the most impacted to climate change and is expected to reduce by 21 percent in Middle Gangetic Plains towards end of the century. Hence, there is a need to formulate sustainable adaptation measures and practices suitable to location-specific needs for enhancing climate resiliency and capacity of agricultural system to withstand climatic shocks.


Author(s):  
N. Maidanovych ◽  

The purpose of this work is to review and analyze the main results of modern research on the impact of climate change on the agro-sphere of Ukraine. Results. Analysis of research has shown that the effects of climate change on the agro-sphere are already being felt today and will continue in the future. The observed climate changes in recent decades have already significantly affected the shift in the northern direction of all agro-climatic zones of Europe, including Ukraine. From the point of view of productivity of the agro-sphere of Ukraine, climate change will have both positive and negative consequences. The positives include: improving the conditions of formation and reducing the harvesting time of crop yields; the possibility of effective introduction of late varieties (hybrids), which require more thermal resources; improving the conditions for overwintering crops; increase the efficiency of fertilizer application. Model estimates of the impact of climate change on wheat yields in Ukraine mainly indicate the positive effects of global warming on yields in the medium term, but with an increase in the average annual temperature by 2 ° C above normal, grain yields are expected to decrease. The negative consequences of the impact of climate change on the agrosphere include: increased drought during the growing season; acceleration of humus decomposition in soils; deterioration of soil moisture in the southern regions; deterioration of grain quality and failure to ensure full vernalization of grain; increase in the number of pests, the spread of pathogens of plants and weeds due to favorable conditions for their overwintering; increase in wind and water erosion of the soil caused by an increase in droughts and extreme rainfall; increasing risks of freezing of winter crops due to lack of stable snow cover. Conclusions. Resource-saving agricultural technologies are of particular importance in the context of climate change. They include technologies such as no-till, strip-till, ridge-till, which make it possible to partially store and accumulate mulch on the soil surface, reduce the speed of the surface layer of air and contribute to better preservation of moisture accumulated during the autumn-winter period. And in determining the most effective ways and mechanisms to reduce weather risks for Ukrainian farmers, it is necessary to take into account the world practice of climate-smart technologies.


2011 ◽  
Vol 8 (2) ◽  
pp. 2235-2262
Author(s):  
E. Joigneaux ◽  
P. Albéric ◽  
H. Pauwels ◽  
C. Pagé ◽  
L. Terray ◽  
...  

Abstract. Under certain hydrological conditions it is possible for spring flow in karst systems to be reversed. When this occurs, the resulting invasion by surface water, i.e. the backflooding, represents a serious threat to groundwater quality because the surface water could well be contaminated. Here we examine the possible impact of future climate change on the occurrences of backflooding in a specific karst system, having first established the occurrence of such events in the selected study area over the past 40 yr. It would appear that backflooding has been more frequent since the 1980s, and that it is apparently linked to river flow variability on the pluri-annual scale. The avenue that we adopt here for studying recent and future variations of these events is based on a downscaling algorithm relating large-scale atmospheric circulation to local precipitation spatial patterns. The large-scale atmospheric circulation is viewed as a set of quasi-stationary and recurrent states, called weather types, and its variability as the transition between them. Based on a set of climate model projections, simulated changes in weather-type occurrence for the end of the century suggests that backflooding events can be expected to decrease in 2075–2099. If such is the case, then the potential risk for groundwater quality in the area will be greatly reduced compared to the current situation. Finally, our results also show the potential interest of the weather-type based downscaling approach for examining the impact of climate change on hydrological systems.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1762 ◽  
Author(s):  
Nathan Rickards ◽  
Thomas Thomas ◽  
Alexandra Kaelin ◽  
Helen Houghton-Carr ◽  
Sharad K. Jain ◽  
...  

The Narmada river basin is a highly regulated catchment in central India, supporting a population of over 16 million people. In such extensively modified hydrological systems, the influence of anthropogenic alterations is often underrepresented or excluded entirely by large-scale hydrological models. The Global Water Availability Assessment (GWAVA) model is applied to the Upper Narmada, with all major dams, water abstractions and irrigation command areas included, which allows for the development of a holistic methodology for the assessment of water resources in the basin. The model is driven with 17 Global Circulation Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to assess the impact of climate change on water resources in the basin for the period 2031–2060. The study finds that the hydrological regime within the basin is likely to intensify over the next half-century as a result of future climate change, causing long-term increases in monsoon season flow across the Upper Narmada. Climate is expected to have little impact on dry season flows, in comparison to water demand intensification over the same period, which may lead to increased water stress in parts of the basin.


Author(s):  
Mkhululi Ncube ◽  
Nomonde Madubula ◽  
Hlami Ngwenya ◽  
Nkulumo Zinyengere ◽  
Leocadia Zhou ◽  
...  

The impact of climate-change disasters poses significant challenges for South Africa, especially for vulnerable rural households. In South Africa, the impact of climate change at the local level, especially in rural areas, is not well known. Rural households are generally poor and lack resources to adapt to and mitigate the impact of climate change, but the extent of their vulnerability is largely not understood. This study looked at the micro-level impact of climate change, evaluated household vulnerability and assessed alternative adaptation strategies in rural areas. The results indicate that climate change will hit crop yields hard and that households with less capital are most vulnerable. These households consist of the elderly and households headed by females. Households that receive remittances or extension services or participate in formal savings schemes in villages are less vulnerable. The results suggest that households need to move towards climate-smart agriculture, which combines adaptation, mitigation and productivity growth.


2020 ◽  
Vol 3 (4) ◽  
Author(s):  
Naveen P Singh ◽  
Bhawna Anand ◽  
S K Srivastava ◽  
K V Rao ◽  
S K Bal ◽  
...  

Thestudy attempts to estimateand predict climate impact on crop yieldsusing future temperature projections under two climate emissions scenarios of RCP 4.5 and 8.5 for threedifferent time periods (2030s, 2050s and 2080s) across Agro-climatic zones (ACZ) of India.During the period 1966-2011, a significant rise was observed in both the annual mean maximum and minimum temperature across ACZs. Rainfall recorded an annual decline in Himalayan Regions and Gangetic Plains and a rise in Coastal Regions, Plateau & Hills and Western Dry Region.Our results showedhigh heterogeneity in climate impact onkharif and rabi crop yields (with both negative and positive estimates) across ACZs.It was found that rainfall had a positive effect on most of crop yields, but was not sufficient enough to counterbalance the impact of temperature.Changes in crop yield were more pronounced forhigheremission scenario of RCP 8.5. Thus, it was evident that the relative impacts of climate change and the associated vulnerability varyby ACZs, hence comprehensive crop and region-specific adaptation measures should be emphasized that helps in enhancing resilience of agricultural system in short to medium term. 


2019 ◽  
Vol 16 (6) ◽  
pp. 57-66
Author(s):  
V. V. Zholudeva

The purpose of this study is to analyze current global and regional climate changes, as well as a statistical assessment of the factors that cause climate change, on the one hand, and an assessment of the impact of climate parameters on the economy, agriculture and demographic processes using the example of the Yaroslavl region, on the other hand. The study was conducted on the example of the Yaroslavl region and covers the period from 1922 to the present. First of all, the article analyzes the regulatory documents on ecology and climate change. The insufficient attention of federal and local authorities to solving the above problems, the lack of regional strategies to prevent climate change and reduce its negative consequences, which leads to the increased socio-economic risks, is noted. In order to identify factors causing climate change, a correlation and regression analysis was performed. Regression models of the dependence of crop yields on the average annual air temperature and the average annual precipitation were constructed. The statistical base of the study was compiled by the data of the Federal State Statistics Service and the territorial body of the Federal State Statistics Service for the Yaroslavl Region, as well as GISMETEO data. Processing of the research results was carried out in Microsoft Excel and SPSS.During the study, it was found that in the Yaroslavl region there is an increase in average annual and average monthly air temperatures, as well as a slight increase in precipitation, which mainly occurs due to an increase in rainfall in spring and early summer.The anthropogenic factors that cause climate change, namely the burning of fossil fuels, an increase in industrial production, an increase in the number of vehicles, as well as a change in land use and deforestation, are identified and statistically substantiated.As a result of the study, it was found that changes in climatic parameters have an impact on the economy, agriculture and demographic processes, namely: – climate change has a positive effect on agricultural production. According to studies, an increase in average air temperature is a positive factor for the agricultural sector of the Yaroslavl region, as crop yields will increase with increasing air temperature. These trends need to be considered when choosing certain varieties of crops and selecting fertilizers. Increasing the level of management and the transition to more modern technologies will have a greater effect. The efficiency and productivity of agriculture, as well as the food security of the region, will depend on these decisions; – it was found that hydro meteorological factors have a negligible effect on the growth rate of gross regional product and food production; – a statistical study showed that in the Yaroslavl region the effects of climate change on demographic processes and human health are currently insignificant.The findings can be used to develop mechanisms for adaptation to climate change and can serve as a basis for further research in the field of studying the impact of climate change on socio-economic and demographic processes in the Yaroslavl region.


Author(s):  
Baljeet Kaur ◽  
Som Pal Singh ◽  
P.K. Kingra

Background: Climate change is a nonpareil threat to the food security of hundred millions of people who depends on agriculture for their livelihood. A change in climate affects agricultural production as climate and agriculture are intensely interrelated global processes. Global warming is one of such changes which is projected to have significant impacts on environment affecting agriculture. Agriculture is the mainstay economy in trans-gangetic plains of India and maize is the third most important crop after wheat and rice. Heat stress in maize cause several changes viz. morphological, anatomical and physiological and biochemical changes. Methods: In this study during 2014-2018, impact of climate change on maize yield in future scenarios was simulated using the InfoCrop model. Average maize yield from 2001-15 was collected for Punjab, Haryana and Delhi to calibrate and validate the model. Future climatic data set from 2020 to 2050 was used in the study to analyse the trends in climatic parameters.Result: Analysis of future data revealed increasing trends in maximum temperature and minimum temperature. Rainfall would likely follow the erratic behaviour in Punjab, Haryana and Delhi. Increase in temperature was predicted to have negative impact on maize yield under future climatic scenario.


Sign in / Sign up

Export Citation Format

Share Document