Variability of ecosystem scale water-use efficiency in a nutrient manipulation experiment

Author(s):  
Tarek EI-Madany ◽  
Markus Reichstein ◽  
Arnaud Carrara ◽  
M. Pilar Martin ◽  
Gerardo Moreno ◽  
...  

<p>Nitrogen (N) and phosphorus (P) are the two most important limiting soil nutrients reducing carbon sequestration globally. Through anthropogenic N-deposition, stoichiometric imbalances in plant-available N and P are expected in terrestrial ecosystems. This will result in increased P-limitation to plants and associated, but yet understudied, implications for ecosystem carbon sequestration, water-use efficiency (WUE), and biophysical properties. Here, we show results of a large-scale fertilization experiment designed to quantify effects of stoichiometric N:P ratio imbalances on WUE in a semi-arid tree-grass ecosystem. At the ecosystem-scale, the addition of N increased leaf area index, canopy chlorophyll content, and WUE. The addition of P, which relived the N:P imbalance, resulted in a further increase of WUE, more fixed carbon per transpired water. We conclude that increased N and combined N+P addition leads to shifts in many aspects of ecosystem functioning and biophysics, in particular related to water use strategies.</p>

2019 ◽  
Vol 11 (23) ◽  
pp. 2766 ◽  
Author(s):  
Xiaozheng Du ◽  
Xiang Zhao ◽  
Tao Zhou ◽  
Bo Jiang ◽  
Peipei Xu ◽  
...  

Global climate changes have increased the imbalance of water resources, especially in northern China, which comprises typical arid and semiarid regions. Large-scale afforestation has been implemented over the past three decades in northern China. The ecosystem water use efficiency (WUE) connects the carbon cycle and water cycle of the terrestrial ecosystems and is defined as the ratio of the gross primary productivity (GPP) to the evapotranspiration. However, there are still an insufficient number of studies on the impact of the afforestation on the WUE. In this study, we applied the random forest (RF) model to explore the impacts of climate and nonclimate factors on the WUE in northern China. The results showed that in areas with high precipitation, the forests had the highest WUE, while in the arid areas, the croplands had the highest WUE. Of the total area, 44.34% showed a significant increase, and 5.89% showed a significant decrease in the WUE from 1982–2015 in northern China. The main driving factors for the changes in the WUE were climate factors, including the precipitation, temperature and solar radiation, which contributed to approximately 84% of the WUE trends, while human activities, such as afforestation, contributed to approximately 16% of the WUE trends. Overall, although the climate had a larger impact on the WUE dynamics than the human activities, our results suggested that the impacts of the afforestation programs on forest carbon and water cycles should be considered in the context of climate change.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 313
Author(s):  
Guoqiang Zhang ◽  
Bo Ming ◽  
Dongping Shen ◽  
Ruizhi Xie ◽  
Peng Hou ◽  
...  

Achieving optimal balance between maize yield and water use efficiency is an important challenge for irrigation maize production in arid areas. In this study, we conducted an experiment in Xinjiang China in 2016 and 2017 to quantify the response of maize yield and water use to plant density and irrigation schedules. The treatments included four irrigation levels: 360 (W1), 480 (W2), 600 (W3), and 720 mm (W4), and five plant densities: 7.5 (D1), 9.0 (D2), 10.5 (D3), 12.0 (D4), and 13.5 plants m−2 (D5). The results showed that increasing the plant density and the irrigation level could both significantly increase the leaf area index (LAI). However, LAI expansion significantly increased evapotranspiration (ETa) under irrigation. The combination of irrigation level 600 mm (W3) and plant density 12.0 plants m−2 (D4) produced the highest maize yield (21.0–21.2 t ha−1), ETa (784.1–797.8 mm), and water use efficiency (WUE) (2.64–2.70 kg m−3), with an LAI of 8.5–8.7 at the silking stage. The relationship between LAI and grain yield and evapotranspiration were quantified, and, based on this, the relationship between water use and maize productivity was analyzed. Moreover, the optimal LAI was established to determine the reasonable irrigation level and coordinate the relationship between the increase in grain yield and the decrease in water use efficiency.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1685 ◽  
Author(s):  
Abdul Shabbir ◽  
Hanping Mao ◽  
Ikram Ullah ◽  
Noman Ali Buttar ◽  
Muhammad Ajmal ◽  
...  

Root morphology and its components’ behavior could show a considerable response under multiple water application points per plant to help the ultimate effect of fruit yield and fruit quality. In this study, a comparison of a single emitter per plant was made with two, three, and four emitters per plant under drip irrigation and two irrigation levels (full irrigation 100% and deficit irrigation 75% of crop evapotranspiration) to investigate their effects on physiological parameters, root, yield, and their associated components for potted cherry tomato under greenhouse conditions in Jiangsu-China. The experimental results showed that the plants cultivated in the spring-summer planting season showed significantly higher results than the fall-winter planting season due to low temperatures in the fall-winter planting season. However, the response root length, root average diameter, root dry mass, leaf area index, photosynthetic rate, transpiration rate, fruit unit fresh weight, the number of fruits, and pH were increased by multiple emitters per plant over a single emitter per plant, but total soluble solids decreased. Besides, a decreasing trend was observed by deficit irrigation for both planting seasons, and vice versa for the case for tomato total soluble solids. Due to an increase in measured parameters for multiple emitters per plant over a single emitter per plant, the yield, water use efficiency, and water use efficiency biomass significantly increased by 18.1%, 17.6%, and 15.1%, respectively. The deficit irrigation caused a decrease in the yield of 5% and an increase in water use efficiency and water use efficiency biomass of 21.4% and 22.9%, respectively. Two, three, and four emitters per plant had no significant effects, and the obtained results were similar. Considering the root morphology, yield, water use efficiency, water use efficiency biomass, and fruit geometry and quality, two emitters per plant with deficit irrigation are recommended for potted cherry tomato under greenhouse conditions. The explanation for the increased biomass production of the plant, yield, and water use efficiency is that two emitters per plant (increased emitter density) reduced drought stress to the roots, causing increased root morphology and leaf area index and finally promoting the plant’s photosynthetic activity.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Xuguang Tang ◽  
Hengpeng Li ◽  
Ankur R. Desai ◽  
Zoltan Nagy ◽  
Juhua Luo ◽  
...  

2019 ◽  
Vol 39 (24) ◽  
Author(s):  
宫菲 GONG Fei ◽  
杜灵通 DU Lingtong ◽  
孟晨 MENG Chen ◽  
丹杨 DAN Yang ◽  
王乐 WANG Le ◽  
...  

2014 ◽  
Vol 195-196 ◽  
pp. 32-37 ◽  
Author(s):  
Yang Gao ◽  
Xianjin Zhu ◽  
Guirui Yu ◽  
Nianpeng He ◽  
Qiufeng Wang ◽  
...  

2020 ◽  
Vol 13 (6) ◽  
pp. 2744
Author(s):  
Elaine Cristina Batista da Silva ◽  
José Romualdo De Sousa Lima ◽  
Antônio Celso Dantas Antonino ◽  
Airon Aparecido Silva de Melo ◽  
Eduardo Soares de Souza ◽  
...  

A irrigação suplementar pode ser uma técnica promissora para o aumento da produção da palma forrageira, contudo, depende da evapotranspiração (ET). A irrigação e a ET estão estritamente relacionados com a produtividade das culturas (P), de modo que a relação entre P e ET resulta na eficiência no uso de água (EUA). Assim, objetivou-se avaliar P, ET e EUA em palma, sob irrigação suplementar. O experimento foi conduzido em campo, com palma submetida a irrigação por gotejamento com intervalos de reposição de água no solo de 7 (T7), 14 (T14) e 21 (T21) dias, mais o tratamento de sequeiro (T0), em blocos ao acaso, com 4 repetições. O crescimento da palma foi monitorado por meio da medição da largura (LC), do comprimento (CC), da área (AC), do índice de área (IAC) e da espessura dos cladódios (EC). Ao longo do ciclo da cultura também foram monitoradas as condições meteorológicas. A ET foi obtida como termo residual da equação do balanço hídrico. Os tratamentos não tiveram efeitos significativos nas variáveis biométricas e na produtividade da palma forrageira. A menor ET foi obtida no T0 (406,1 mm total e 1,7 mm d‑1), sendo que o T7 apresentou a maior ET (664,4 mm total e 2,8 mm d-1). A maior EUA (392,8 kg MF ha-1 mm-1) foi obtida no tratamento sob sequeiro (T0). Com base na produtividade e na EUA da palma forrageira, recomenda-se, para as condições do município de Garanhuns, que o cultivo da mesma seja realizado sob condições de sequeiro.Effect of the Supplemental Irrigation on Yield and Water Use Efficiency of Cactus Pear A B S T R A C TThe supplementary irrigation may be a promising technique to increase forage cactus yield, however, it depends of evapotranspiration (ET). Irrigation and ET are closely related to crop yields (P), so the relationships between P and ET result in water use efficiency (WUE). Thus, the objective was to evaluate P, ET and WUE in cactus pear, under supplementary irrigation. The experiment was conducted under field conditions with cactus pear submitted to drip irrigation with soil water replacement intervals of 7 (T7), 14 (T14) and 21 (T21) days, plus the rainfed treatment (T0), in blocks with 4 replicates. Cactus pear growth, by the measurements of width (WC), length (LC), area (CA), area index (CAI) and thickness of cladodes (CD), was monitored. Meteorological conditions along the cactus pear cycle were monitored. The ET was quantified by the soil water balance method. The treatments had no effects on the biometric variables and yield of cactus pear. ET was lower in T0 (406.1 mm total and 1.7 mm day-1), with T7 showing the highest values of ET (664.4 mm total and 2.8 mm day-1). It was observed that the largest WUE (392.8 kg MF ha-1 mm-1) was in the rainfed treatment (T0). On the basis of the yield and WUE of the cactus pear, it is recommended, for the conditions of the municipality of Garanhuns that the cultivation of the same be carried out under conditions of rainfed.Key words: Soil moisture; evapotranspiration; water balance.


2019 ◽  
Vol 11 (3) ◽  
pp. 549
Author(s):  
Fábio Teixeira Delazari ◽  
Mariane Gonçalves Ferreira Copati ◽  
Gustavo Henrique da Silva ◽  
Ronaldo Silva Gomes ◽  
Derly José Henriques da Silva ◽  
...  

Nitrogen fertilization and supplying of water are crucial factors for quality and quantity produces of coriander. The objective of this study was to evaluate morphological and ecophysiological characteristics for coriander under five irrigation depths and two doses of nitrogen (N). Experimental layout was completely randomized design in a split plot scheme with five replications. The irrigation depths (plot) was 25, 50, 75, 100 and 125% of crop evapotranspiration (ETc). The doses of N (subplot) corresponded to 35 and 70 kg ha-1. The cultivation of coriander (“Vedete”) was in a protected environment. The ratio between the aerial part and roots linearly increased with the increment of the irrigation depths and was highest under 70 kg ha-1 of nitrogen. The leaf area index linearly increased with the increment of the irrigation depths at both doses of N. The leaf index of chlorophyll “a” was highest under irrigation depths of 87 and 75% of ETc for 35 and 70 kg ha-1 of N, respectively. The leaf index of chlorophyll “b” decrease linearly with the increase of irrigation depths in both doses of N. The nitrogen use efficiency was maximized with high soil moisture conditions. The water use efficiency decreases linearly with increasing of irrigation depth. The best irrigation depth and nitrogen dose obtained in this study was 125% of ETc and 70 kg/ha. The leaf index of chlorophyll “a” and “b” are important indicators of hydric stress. The leaf index of chlorophyll “b” are negatively correlated with leaf area index. N supply increase the water use efficiency.


Sign in / Sign up

Export Citation Format

Share Document