Reactive transport of dichloromethane in laboratory aquifers: insights from dual-element isotope analysis and biomolecular approaches

Author(s):  
Maria Prieto Espinoza ◽  
Sylvain Weill ◽  
Benjamin Belfort ◽  
François Lehmann ◽  
Jérémy Masbou ◽  
...  

<p>Dichloromethane (DCM) is a toxic industrial solvent frequently detected in multi-contaminated aquifers. DCM often co-occurs with chlorinated ethenes resulting in complex mixtures posing challenges to predict its fate in groundwater. Changes in hydrochemistry and redox conditions in groundwater due to fluctuations in the water table may affect the extent and pathways of pollutant biodegradation. In this context, Compound-Specific Isotope Analysis (CSIA) is a useful tool to evaluate natural degradation of halogenated hydrocarbons. In this study, the impact of water table fluctuations on DCM biodegradation was examined in two laboratory aquifers using dual-element isotope analysis - the stable isotope fractionation of two elements (e.g., <sup>13</sup>C and <sup>37</sup>Cl), and high-throughput biomolecular approaches. The aquifers were supplied with contaminated groundwater from the former industrial site Thermeroil (France). High-resolution sampling and monitoring of pore water allowed examining, under steady and transient conditions, the aquifers response with respect to hydrochemistry and microbial composition. A dual C-Cl stable isotope approach (Λ<sup>C/Cl</sup> = Δδ<sup>13</sup>C/Δδ<sup>37</sup>Cl) was developed using GC-IRMS (C-DCM) and GC-MS (Cl-DCM) to estimate the extent of DCM degradation and to identify DCM degradation pathways. Under the experimental steady conditions, dissolved oxygen (<1.2 mg/L) and increasing Fe<sup>2+</sup> concentrations at lower depths of the aquifer models indicated iron-reducing prevailing conditions, while mass transfer of oxygen increased during water table fluctuations. Pronounced carbon isotope fractionation of DCM was associated with larger DCM mass removal under transient conditions (>90%) compared to steady conditions (mass removal of 35%). Under transient conditions, carbon enrichment factors (ε<sub>C</sub>) became larger over time ranging from -18.9 ± 3.4‰ to -33 ± 0.3‰ whereas chlorine enrichment factors (ε<sub>Cl</sub>) remained constant (-3.6 ± 0.7‰). In contrast, a similar ε<sub>C</sub> of -20 ± 3.5‰ (beginning of transient condition) but a larger ε<sub>Cl</sub> of -10.8 ± 2‰ were determined under steady conditions. As Λ<sup>C/Cl</sup> values are independent of complicating masking effects, and thus reflect reaction mechanisms, dual C-Cl isotope plots suggested distinct DCM degradation pathways under steady and transient conditions with Λ<sup>C/Cl</sup> values of 1.68 ± 0.26 and 3.41 ± 0.50, respectively. Even though a contribution of different mechanisms may take place during transient conditions, Λ<sup>C/Cl</sup> values fall in the range of S<sub>N</sub>1 pathways reported for <em>Ca.</em> Dichloromethanomonas elyunquensis (Λ<sup>C/Cl</sup> = 3.40 ± 0.03).  The distinct Λ<sup>C/Cl</sup> values may imply mechanistically distinct C-Cl bond cleavage reactions subjected to microbial adaptations during dynamic hydrogeological conditions. Although bacterial communities did not significantly change over time, the occurrence of <em>Geobacter</em> under both steady and transient conditions supports DCM degradation under iron-reducing prevailing conditions. Altogether, our results highlight that water table fluctuations enhance DCM biodegradation and influence DCM degradation pathways compared to steady conditions. This integrative study provides new insights into <em>in situ</em> degradation of DCM in contaminated aquifers and accounts the effects of dynamic water tables on DCM degradation.</p>

2020 ◽  
Author(s):  
Martin Thullner ◽  
Florian Centler ◽  
Thomas Hofstetter

<p>In groundwater and other environmental compartments, compound-specific stable isotope analysis (CSIA) has been used for the determination of specific degradation pathways by analyzing the stable isotopes of two elements. This ‘dual-isotope’ or two-dimensional isotope’ analysis also allows for an estimation of the contribution of two different pathways contributing both to the overall degradation and stable isotope fractionation. Heterogeneous groundwater flow patterns lead to some yet acceptable uncertainities in the results of this method.  Recent CSIA approaches also allow for investigating the simultaneous stable isotope fractionation effects for three different elements. Such information on the stable isotope fractionation of three different elements of a degradable compound could be used for a quantitative analysis of the contribution of different degradation pathways in systems with three different pathways, but up to know there is no theoretical concepts providing such quantitative estimate.</p><p>The aim of the present study is to overcome this shortage and to present such theoretical concept for the quantification of single pathway contribution to the overall biodegradation in groundwater and other systems with three parallel degradation pathways. For this purpose the approach of Centler et al. (2013) for the analysis of dual-isotope analysis has been expanded to consider the fractionation of three different elements affected by three different pathways. The obtained analytical expression allows for the quantification of each pathway to total degradation based stable isotope enrichment factors and measured stable isotope signatures. The applicability of the concept is demonstrated using data from Wijker et al. (2013).</p><p> </p><p>Centler, F., Hesse, F., and Thullner, M. (2013) Journal of Contaminant Hydrology, 152, 97-116.</p><p>Wijker, R. S., Bolotin, J., Nishino, S. F., Spain, J. C., and Hofstetter, T. B. (2013) Environmental Science & Technology, 47, 6872-6883.</p><p> </p>


Author(s):  
Reem Ismail ◽  
Saeid Shafieiyoun ◽  
Riyadh Al Raoush ◽  
Fereidoun Rezanezhad

Most of the prediction theories regarding dissolution of organic contaminants in the subsurface systems have been proposed based on the static water conditions; and the influence of water fluctuations on mass removal requires further investigations. In this study, it was intended to investigate the effects of water table fluctuations on biogeochemical properties of the contaminated soil at the smear zone between the vadose zone and the groundwater table. An automated 60 cm soil column system was developed and connected to a hydrostatic equilibrium reservoir to impose the water regime by using a multi-channel pump. Four homogenized hydrocarbon contaminated soil columns were constructed and two of them were fully saturated and remained under static water conditions while another two columns were operated under water table fluctuations between the soil surface and 40 cm below it. The experiments were run for 150 days and relevant geochemical indicators as well as dissolved phase concentrations were analyzed at 30 and 50 cm below the soil surface in all columns. The results indicated significant difference in terms of biodegradation effectiveness between the smear zones exposed to static and water table fluctuation conditions. This presentation will provide an overview of the experimental approach, mass removal efficiency, and key findings.


2016 ◽  
Vol 94 (5) ◽  
pp. 353-360 ◽  
Author(s):  
Ulalume Hernández-Arciga ◽  
L. Gerardo Herrera M. ◽  
Juan B. Morales-Malacara

We used C and N stable isotopes of nectarivorous bats and their ectoparasites to determine the extent to which parasites depend on the host individual for food. The difference in stable isotope values between parasites and host tissues (Δ13C and Δ15N) was used as a proxy of host use. First, we tested the hypothesis that movement among individual Mexican long-tongued bats (Choeronycteris mexicana Tschudi, 1844) is more likely to occur in winged flies than in mites as indicated by higher host–parasite isotopic Euclidian distance (ED). Second, we tested the hypothesis that ectoparasite species in two coexisting bat species representing the C3 (Geoffroy’s tailless bat, Anoura geoffroyi Gray, 1838) and the CAM (lesser long-nosed bat, Leptonycteris yerbabuenae Martínez and Villa-R., 1940) food chains were monoxenous as indicated by their isotopic values. We also examined Δ13C and Δ15N of individual parasites in relation to 13C and 15N reference enrichment factors as an indication of host switching. In general, flies in C. mexicana had higher ED and wider ranges of individual Δ13C and Δ15N than mites, suggesting that host switching occurred to a larger extent. Most ectoparasites species collected in both coexisting bats were monoxenous, but one fly species appears to be oligoxenous. Individual Δ13C and Δ15N values varied widely in these parasite species, suggesting movements within species hosts.


2011 ◽  
Vol 44 (2) ◽  
pp. 429-432 ◽  
Author(s):  
Andrew J. Wall ◽  
Peter J. Heaney ◽  
Ryan Mathur ◽  
Jeffrey E. Post ◽  
Jonathan C. Hanson ◽  
...  

A non-metallic flow-through reaction cell is described, designed forin situtime-resolved X-ray diffraction coupled with stable isotope analysis. The experimental setup allows the correlation of Cu isotope fractionation with changes in crystal structure during copper sulfide dissolution. This flow-through cell can be applied to many classes of fluid–mineral reactions that involve dissolution or ion exchange.


2020 ◽  
Author(s):  
Maria Prieto Espinoza ◽  
Sylvain Weill ◽  
Raphaël Di chiara ◽  
Benjamin Belfort ◽  
François Lehmann ◽  
...  

<p>Reactive transport in porous media involves a complex interplay of multiple processes relative to flow of water and gases, transport of elements, chemical reactions and microbial activities. In surface-groundwater interfaces, the role of the capillary fringe is of particular interest as water table variations can strongly impact the transfer of gases (e.g. oxygen), the evolution of redox conditions and the evolution/adaptation of bacterial/microbial populations that control biodegradation pathways of contaminants. Although the understanding of individual processes is advanced, their interactions are not yet fully understood challenging the development of efficient reactive transport models (RTM) for predictive applications. In this context, the combination of microbial approaches with isotope measurements and modelling may be useful to understand reactive transport of halogenated pollutants in hydrogeological dynamic systems, to improve processes representation in RTMs, and to reduce model equifinality. Dichloromethane (DCM) is a toxic and volatile halogenated compound frequently detected in multi-contaminated aquifers. Although mechanisms of DCM microbial degradation under both aerobic and anaerobic conditions have been described, little is known about the relationships between the hydrogeochemical variations caused by water table fluctuations, as well as their effects on the diversity and distribution of bacterial communities and degradation pathways.<br>            In this study, two laboratory aquifers fed by contaminated groundwater from the industrial site Thermeroil (France) were designed to collect water samples at high-resolution to investigate the reactive transport of DCM in porous media under steady and dynamic hydrogeological conditions. The effect of water table variations on hydrochemical, microbial and isotopic composition (δ<sup>13</sup>C and δ<sup>37</sup>Cl) was examined to derive DCM mass removal and potential changes in degradation pathways. For the latter, Compound-Stable Isotope Analysis (CSIA) has been used as a tool to evaluate natural degradation of halogenated hydrocarbons. A RTM model (CubicM) is currently being developed to include dual-element CSIA and biological processes - such as growth, decay, attachment, detachment or dormancy – and relate changes in redox conditions with the evolution of DCM degrading populations. A two-phase flow model (i.e. water and gas) has been developed to account for the volatilization and the associated transport processes of halogenated volatile compounds in porous media. Currently, the model is tested on the experimental results to assist in the interpretation of DCM dissipation and the observed biogeochemical and microbial processes to determine the best-suited formalism to address the effect of water table fluctuations on DCM reactive transport in porous media. Such model will enable to assess natural attenuation of DCM at contaminated sites accounting for dynamic hydrogeological conditions.</p>


2013 ◽  
Vol 16 (1) ◽  
pp. 137-166 ◽  
Author(s):  
Gisela Grupe ◽  
Claus von Carnap-Bornheim ◽  
Cornelia Becker

Viking Haithabu and its successor, the medieval town of Schleswig, were important international trade centres. Human skeletal finds spanning a period of approximately 400 years represent the bodily relics of the former inhabitants, who witnessed the rise and fall of these trade centres. Analysis of δ13C and δ15N from bone collagen was performed to reconstruct and detect changes in dietary preferences over time. A comparison with the respective isotopic data obtained from a large archaeofaunal sample resulted in a classic ‘mixing muddle’ that could only be deciphered using isotope mass balance mixing models applied on an individual basis. It was found that the overall subsistence economy shifted over time from a focus on fishing to one based predominantly on farming. The move to utilizing a new main source of protein did not impair overall protein supply. In addition, changing living conditions experienced by the inhabitants of Schleswig may have led to a change in infant nursing strategy.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5128 ◽  
Author(s):  
Rasa Morkūnė ◽  
Jūratė Lesutienė ◽  
Julius Morkūnas ◽  
Rūta Barisevičiūtė

This study quantifies contributions of different food sources in the winter diet of the Velvet Scoter (Melanitta fusca) in coastal waters of the Lithuanian Baltic Sea using non-lethal avian sampling. We highlight the application of stable sulphur isotope ratios as complementary to stable carbon and nitrogen isotope analysis in order to discriminate sandy bottom macrozoobenthos organisms as potential food sources for the Velvet Scoter. Selection of the most relevant trophic enrichment factors and Monte Carlo simulations in order to choose the best fitted model were undertaken. The stable isotope mixing model revealed the main contributions of a group of bivalves, Mya arenaria and Cerastoderma glaucum, to be 46–54%, and while the crustacean, Saduria entomon, comprised 26–35% of the diet.


2020 ◽  
Vol 22 (3) ◽  
pp. 567-582
Author(s):  
Ann Sullivan Ojeda ◽  
Elizabeth Phillips ◽  
Barbara Sherwood Lollar

A review that highlights the utility of multi-element compound-specific isotope analysis (CSIA) in halogenated hydrocarbon remediation.


2008 ◽  
Vol 42 (21) ◽  
pp. 7793-7800 ◽  
Author(s):  
Carsten Vogt ◽  
Esther Cyrus ◽  
Ilka Herklotz ◽  
Dietmar Schlosser ◽  
Arne Bahr ◽  
...  

2021 ◽  
Vol 17 (4) ◽  
pp. 19-32
Author(s):  
Anna Stockstad ◽  
Ella Gray ◽  
Stephen Sebestyen ◽  
Nina Lany ◽  
Randall Kolka ◽  
...  

Water table fluctuations in peatlands are closely coupled with the local climate setting and drive critical ecosystem processes such as nutrient cycling. In Minnesota, USA, peatlands cover ten percent of the surface area, approximately 2.5 million hectares, some of which are actively managed for forest products. To explore the relationship between peatland water tables and precipitation, long-term data (1961 to 2019) were used from the Marcell Experimental Forest in northern Minnesota. Starting in 1961, water table data from seven peatlands, including two types of peatlands (bogs and fens), were measured. We used the Theil-Sen estimator to test for monotonic trends in mean monthly water table elevations for individual peatlands and monthly precipitation. Water levels in bogs were both more variable and had mean water table elevations that were closer to the surface. Individual trends of water table elevations differed among peatlands. Water table elevations increased over time in three of the bogs studied and decreased over time in two of the bogs studied. Trends within fens were notably nonlinear across time. No significant linear trend was found for mean monthly precipitation between 1961 and 2019. These results highlight differences in peatlands types, local physiography, and the importance of understanding how changes in long-term dynamics coupled with changing current conditions will influence the effects of water table fluctuations on ecosystem services. The variability of water table elevations in bogs poses potential difficulties in modeling these ecosystems or creating adaptive management plans. KEYWORDS: Peatlands; Hydrology; Water tables; Bogs; Fens; Monitoring; Minnesota; Climate Change


Sign in / Sign up

Export Citation Format

Share Document