The International Soil Moisture Network in assistance of EO soil moisture validation products, services and models

Author(s):  
Daniel Aberer ◽  
Irene Himmelbauer ◽  
Lukas Schremmer ◽  
Ivana Petrakovic ◽  
Wouter Dorigo ◽  
...  

<p>The International Soil Moisture Network (ISMN, https://ismn.geo.tuwien.ac.at/) is an international cooperation to establish and maintain a unique centralized global data hosting facility, making in situ soil moisture data easily and freely accessible. This database is an essential means for validating and improving global satellite soil moisture products, land surface -, climate- , and hydrological models. </p><p>In situ measurements are crucial to calibrate and validate satellite soil moisture products. For a meaningful comparison with remotely sensed data and reliable validation results, the quality of the reference data is essential. The various independent local and regional in situ networks often do not follow standardized measurement techniques or protocols, collecting their data in different units, at different depths and at various sampling rates. Besides, quality control is rarely applied and accessing the data is often not easy or feasible.</p><p>The ISMN has been created to address the above-mentioned issues and is building a stable base to assist EO products, services and models. Within the ISMN, in situ soil moisture measurements (surface and sub-surface) are collected, harmonized in terms of units and sampling rates, advanced quality control is applied and the data is then stored in a database and made available online, where users can download it for free.</p><p>Founded in 2009, the ISMN has grown to a widely used in situ data source including 61 networks with more than 2600 stations distributed on a global scale and a steadily growing user community > 3200 registered users strong. Time series with hourly timestamps from 1952 – up to near real time are stored in the database and are available through the ISMN web portal, including daily near-real time updates from 6 networks (> 900 stations). With continuous financial support through the European Space Agency (formerly SMOS and IDEAS+ programs, currently QA4EO program), the ISMN evolved into a platform of benchmark data for several operational services such as ESA CCI Soil Moisture, the Copernicus Climate Change (C3S), the Copernicus Global Land Service (CGLS) and the online validation service Quality Assurance for Soil Moisture (QA4SM). In general, ISMN data is widely used in a variety of scientific fields (e.g. climate, water, agriculture, disasters, ecosystems, weather, biodiversity, etc.).</p><p>About 10’000 datasets are available through the web portal. However, the spatial coverage of in situ observations still needs to be improved. For example, in Africa and South America only sparse data are available. Innovative ideas, such as the inclusion of soil moisture data from low cost sensors (eventually) collected by citizen scientists, holds the potential of closing this gap, thus providing new information and knowledge.</p><p>In this session, we give an overview of the ISMN, its unique features and its benefits for validating satellite soil moisture products.</p>

2020 ◽  
Author(s):  
Irene Himmelbauer ◽  
Daniel Aberer ◽  
Lukas Schremmer ◽  
Ivana Petrakovic ◽  
Luca Zappa ◽  
...  

<p><span>The International Soil Moisture Network (ISMN, </span><span></span><span>) is an international cooperation to establish and maintain an open-source global data hosting facility, providing in-situ soil moisture data as well as accompanying soil variables. This database is an essential means for validating and improving global satellite soil moisture products as well as land surface -, climate- , and hydrological models.</span></p><p><span>For hydrological validation, the quality of used in-situ data is essential. The various independent local and regional in situ networks often do not follow standardized measurement techniques or protocols, collect their data in different units, at different depths and at various sampling rates. Besides, quality control is rarely applied and accessing the data is often not easy or feasible.</span></p><p><span>The ISMN was created to address the above-mentioned issues. Within the ISMN, in situ soil moisture measurements (surface and sub-surface) are collected, harmonized in terms of units and sampling rates, advanced quality control is applied and the data is then stored in a database and made available online, where users can download it for free. </span></p><p><span>Since its establishment in 2009 and with continuous financial support through the European Space Agency (ESA), the ISMN evolved into a widely used in situ data source growing continuously (in terms of data volume and users). Historic measurements starting in 1952 up to near–real time are available through the ISMN web portal. Currently, the ISMN consists of 60 networks with more than 2500 stations spread all over the globe. With a </span><span><span>steadily growing user community more than 3200 registered users strong</span></span><span> the value of the ISMN as a well-established and rich source of in situ soil moisture observations is well recognized. In fact, the ISMN is widely used in variety of scientific fields (e.g. climate, water, agriculture, disasters, ecosystems, weather, biodiversity, etc.). </span></p><p> <span>Our partner networks range from networks with a handful of stations to networks that are composed of over 400 sites, are supported with half yearly provider reports on statistical data about their network (e.g.: data download statistic, flagging statistic, etc.). </span></p><p><span>About 10’000 datasets are available through the web portal. However, the spatial coverage of in situ observations still needs to be improved. For example, in Africa and South America only sparse data are available. Innovative ideas, such as the inclusion of soil moisture data from low cost sensors (GROW observatory ) collected by citizen scientists, holds the potential of closing this gap, thus providing new information and knowledge.</span></p><p><span>In this session , we want to give an overview of the ISMN, its unique features and its support of data provider, who are willing to openly share their data, as well as hydrological researcher in need of freely available datasets.</span></p>


2021 ◽  
Author(s):  
Irene Himmelbauer ◽  
Daniel Aberer ◽  
Lukas Schremmer ◽  
Ivana Petrakovic ◽  
Wouter A. Dorigo ◽  
...  

<p><span>The International Soil Moisture Network (ISMN, </span><span>) is a unique centralized global and open freely available in-situ soil moisture data hosting facility. Initiated in 2009 as a community effort through international cooperation (ESA, GEWEX, GTN-H, WMO, etc.), with continuous financial support through the European Space Agency (formerly SMOS and IDEAS+ programs, currently QA4EO program), the ISMN is more than ever an essential means for validating and improving global satellite soil moisture products, land surface -, climate- , and hydrological models.</span></p><p><span>Following, building and improving standardized measurement protocols and quality techniques, the network evolved into a widely used, reliable and consistent in-situ data source (surface and sub-surface) collected by a myriad off data organizations on a voluntary basis. 66 networks are participating (status January 2021) with more than 2750 stations distributed on a global scale and a steadily increasing number of user community, > 3200 registered users strong. Time series with hourly timestamps from 1952 – up to near real time are stored in the database and are available through the ISMN web portal for free (</span><span>), including daily near-real time updates from 6 networks (~ 1000 stations). </span></p><p><span>About 10’000 datasets are available through the web portal and t</span><span>he number of</span> <span>networks and stations covered by the ISMN is still growing as well as most datasets, that are already contained in the database, are continuously being updated.</span></p><p><span>The ISMN evolved in the past decade into a platform of benchmark data for several operational services such as ESA CCI Soil Moisture, the Copernicus Climate Change (C3S), the Copernicus Global Land Service (CGLS), the online validation service Quality Assurance for Soil Moisture (QA4SM) and many more applications, services, products and tools. In general, ISMN data is widely used in a variety of scientific fields with hundreds of studies making use of ISMN data (e.g. climate, water, agriculture, disasters, ecosystems, weather, biodiversity, etc.). </span></p><p><span>In this session, we want to inform ISMN users about the evolution of the ISMN over the past decade, including a description of network and dataset updates and new quality control procedures. Besides, we provide a review of existing literature making use of ISMN data in order to identify current limitations in data availability</span><span>, </span><span>functionality and challenges in data usage in order to help shape potential future modes in operation of this unique community- based data repository.</span></p>


2020 ◽  
Vol 21 (11) ◽  
pp. 2537-2549
Author(s):  
Trent W. Ford ◽  
Steven M. Quiring ◽  
Chen Zhao ◽  
Zachary T. Leasor ◽  
Christian Landry

AbstractSoil moisture is an important variable for numerous scientific disciplines, and therefore provision of accurate and timely soil moisture information is critical. Recent initiatives, such as the National Soil Moisture Network effort, have increased the spatial coverage and quality of soil moisture monitoring infrastructure across the contiguous United States. As a result, the foundation has been laid for a high-resolution, real-time gridded soil moisture product that leverages data from in situ networks, satellite platforms, and land surface models. An important precursor to this development is a comprehensive, national-scale assessment of in situ soil moisture data fidelity. Additionally, evaluation of the United States’s current in situ soil moisture monitoring infrastructure can provide a means toward more informed satellite and model calibration and validation. This study employs a triple collocation approach to evaluate the fidelity of in situ soil moisture observations from over 1200 stations across the contiguous United States. The primary goal of the study is to determine the monitoring stations that are best suited for 1) inclusion in national-scale soil moisture datasets, 2) deriving in situ–informed gridded soil moisture products, and 3) validating and benchmarking satellite and model soil moisture data. We find that 90% of the 1233 stations evaluated exhibit high spatial consistency with satellite remote sensing and land surface model soil moisture datasets. In situ error did not significantly vary by climate, soil type, or sensor technology, but instead was a function of station-specific properties such as land cover and station siting.


2020 ◽  
Vol 12 (17) ◽  
pp. 2861
Author(s):  
Jifu Yin ◽  
Xiwu Zhan ◽  
Jicheng Liu

Soil moisture plays a vital role for the understanding of hydrological, meteorological, and climatological land surface processes. To meet the need of real time global soil moisture datasets, a Soil Moisture Operational Product System (SMOPS) has been developed at National Oceanic and Atmospheric Administration to produce a one-stop shop for soil moisture observations from all available satellite sensors. What makes the SMOPS unique is its near real time global blended soil moisture product. Since the first version SMOPS publicly released in 2010, the SMOPS has been updated twice based on the users’ feedbacks through improving retrieval algorithms and including observations from new satellite sensors. The version 3.0 SMOPS has been operationally released since 2017. Significant differences in climatological averages lead to remarkable distinctions in data quality between the newest and the older versions of SMOPS blended soil moisture products. This study reveals that the SMOPS version 3.0 has overwhelming advantages of reduced data uncertainties and increased correlations with respect to the quality controlled in situ measurements. The new version SMOPS also presents more robust agreements with the European Space Agency’s Climate Change Initiative (ESA_CCI) soil moisture datasets. With the higher accuracy, the blended data product from the new version SMOPS is expected to benefit the hydrological, meteorological, and climatological researches, as well as numerical weather, climate, and water prediction operations.


2021 ◽  
Author(s):  
Samuel Scherrer ◽  
Wolfgang Preimesberger ◽  
Monika Tercjak ◽  
Zoltan Bakcsa ◽  
Alexander Boresch ◽  
...  

<p>To validate satellite soil moisture products and compare their quality with other products, standardized, fully traceable validation methods are required. The QA4SM (Quality Assurance for Soil Moisture; ) free online validation tool provides an easy-to-use implementation of community best practices and requirements set by the Global Climate Observing System and the Committee on Earth Observation Satellites. It sets the basis for a community wide standard for validation studies.</p><p>QA4SM can be used to preprocess, intercompare, store, and visualise validation results. It uses state-of-the-art open-access soil moisture data records such as the European Space Agency’s Climate Change Initiative (ESA CCI) and the Copernicus Climate Change Services (C3S) soil moisture datasets, as well as single-sensor products, e.g. H-SAF Metop-A/B ASCAT surface soil moisture, SMOS-IC, and SMAP L3 soil moisture. Non-satellite data include in-situ data from the International Soil Moisture Network (ISMN: ), as well as land surface model or reanalysis products, e.g. ERA5 soil moisture.</p><p>Users can interactively choose temporal or spatial subsets of the data and apply filters on quality flags. Additionally, validation of anomalies and application of different scaling methods are possible. The tool provides traditional validation metrics for dataset pairs (e.g. correlation, RMSD) as well as triple collocation metrics for dataset triples. All results can be visualised on the webpage, downloaded as figures, or downloaded in NetCDF format for further use. Archiving and publishing features allow users to easily store and share validation results. Published validation results can be cited in reports and publications via DOIs.</p><p>The new version of the service provides support for high-resolution soil moisture products (from Sentinel-1), additional datasets, and improved usability.</p><p>We present an overview and examples of the online tool, new features, and give an outlook on future developments.</p><p><em>Acknowledgements: This work was supported by the QA4SM & QA4SM-HR projects, funded by the Austrian Space Applications Programme (FFG).</em></p>


2021 ◽  
Author(s):  
Wouter Dorigo ◽  
Irene Himmelbauer ◽  
Daniel Aberer ◽  
Lukas Schremmer ◽  
Ivana Petrakovic ◽  
...  

Abstract. In 2009, the International Soil Moisture Network (ISMN) was initiated as a community effort, funded by the European Space Agency, to serve as a centralised data hosting facility for globally available in situ soil moisture measurements (Dorigo et al., 2011a, b). The ISMN brings together in situ soil moisture measurements collected and freely shared by a multitude of organisations, harmonizes them in terms of units and sampling rates, applies advanced quality control, and stores them in a database. Users can freely retrieve the data from this database through an online web portal (https://ismn.earth). Meanwhile, the ISMN has evolved into the primary in situ soil moisture reference database worldwide, as evidenced by more than 3000 active users and over 1000 scientific publications referencing the data sets provided by the network. As of December 2020, the ISMN now contains data of 65 networks and 2678 stations located all over the globe, with a time period spanning from 1952 to present.The number of networks and stations covered by the ISMN is still growing and many of the data sets contained in the database continue to be updated. The main scope of this paper is to inform readers about the evolution of the ISMN over the past decade,including a description of network and data set updates and quality control procedures. A comprehensive review of existing literature making use of ISMN data is also provided in order to identify current limitations in functionality and data usage, and to shape priorities for the next decade of operations of this unique community-based data repository.


2018 ◽  
Vol 22 (15) ◽  
pp. 1-19 ◽  
Author(s):  
Xiaolei Fu ◽  
Lifeng Luo ◽  
Ming Pan ◽  
Zhongbo Yu ◽  
Ying Tang ◽  
...  

Abstract Better quantification of the spatiotemporal distribution of soil moisture across different spatial scales contributes significantly to the understanding of land surface processes on the Earth as an integrated system. While observational data for root-zone soil moisture (RZSM) often have sparse spatial coverage, model-simulated soil moisture may provide a useful alternative. TOPMODEL-Based Land Surface–Atmosphere Transfer Scheme (TOPLATS) has been widely studied and actively modified in recent years, while a detailed regional application with evaluation currently is still lacking. Thus, TOPLATS was used to generate high-resolution (30 arc s) RZSM based on coarse-scale (0.125°) forcing data over part of the Arkansas–Red River basin. First, the simulated RZSM was resampled to coarse scale to compare with the results of Mosaic, Noah, and VIC from NLDAS. Second, TOPLATS performance was assessed based on the spatial absolute difference among the models. The comparison shows that TOPLATS performance is similar to VIC, but different from Mosaic and Noah. Last, the simulated RZSM was compared with in situ observations of 16 stations in the study area. The results suggest that the simulated spatial distribution of RZSM is largely consistent with the distribution of topographic index (TI) in most instances, as topography was traditionally considered a major, but not the only, factor in horizontal redistribution of soil moisture. In addition, the finer-resolution RZSM can reflect the in situ soil moisture change at most local sites to a certain degree. The evaluation confirms that TOPLATS is a useful tool to estimate high-resolution soil moisture and has great potential to provide regional soil moisture estimates.


2013 ◽  
Vol 12 (3) ◽  
pp. vzj2012.0097 ◽  
Author(s):  
W.A. Dorigo ◽  
A. Xaver ◽  
M. Vreugdenhil ◽  
A. Gruber ◽  
A. Hegyiová ◽  
...  

2021 ◽  
Author(s):  
Ivana Petrakovic ◽  
Irene Himmelbauer ◽  
Daniel Aberer ◽  
Lukas Schremmer ◽  
Philippe Goryl ◽  
...  

<p>The International Soil Moisture Network (ISMN, https://ismn.earth) is international cooperation to establish and maintain a unique centralized global data hosting facility, making in-situ soil moisture data easily and freely accessible (Dorigo et al., 2021). Initiated in 2009 as a community effort through international cooperation (ESA, GEWEX, GTN-H, GCOS, TOPC, HSAF, QA4SM, C3S, etc.), the ISMN is an essential means for validating and improving global satellite soil moisture products, land surface-, climate-, and hydrological models. <br><br>The ISMN is a widely used, reliable, and consistent in-situ data source (surface and sub-surface) collected by a myriad of data organizations on a voluntary basis.  The in-situ soil moisture measurements are collected, harmonized in terms of units and sampling rates, advanced quality control is applied and the data is then stored in a database and made available online, where users can download it for free. Currently, 71 networks are participating with more than 2800 stations distributed on a global scale and a steadily increasing number of user communities. Long term time series with mainly hourly timestamps from 1952 – up to near-real-time are stored in the database, including daily near-real-time updates. Besides soil moisture in our database are stored other meteorological variables as well (air temperature, soil temperature, precipitation, snow depth, etc.).<br><br>The ISMN provides benchmark data for several operational services such as ESA CCI Soil Moisture, the Copernicus Climate Change (C3S) and Global Land Service (CGLS), and the online validation tool QA4SM. ISMN data is widely used in a variety of scientific fields (e.g., climate, water, agriculture, disasters, ecosystems, weather, biodiversity, etc).<br><br>To validate the land surface representations of meteorological forecasting models soil moisture from the ISMN has often been used. The development of various generations of TESSEL models used both in the Integrated Forecasting Systems and reanalysis products of ECMWF, greatly profited from soil moisture and temperature data from the ISMN. Using ISMN data several studies assessed the soil moisture skill of the Weather Research and Forecasting Model (WRF) and assessed the forecast skill or new implementations of numerical weather prediction models.<br><br>We greatly acknowledge the financial support provided by ESA through various projects: SMOSnet International Soil Moisture Network, IDEAS+, and QA4EO.<br><br>To ensure a long-term funding for the ISMN operations, several ideas were perused together with ESA. A partner for this task could be found within the International Center for Water Resources and Global Change (ICWRGC) hosted by the German Federal Institute of Hydrology (BfG). <br><br>In this session, we want to give an overview and future outlook of the ISMN, highlighting its unique features and discuss challenges in supporting the hydrological research community in need of freely available, standardized, and quality-controlled datasets. </p>


2010 ◽  
Vol 7 (5) ◽  
pp. 6699-6724 ◽  
Author(s):  
Y. Y. Liu ◽  
R. M. Parinussa ◽  
W. A. Dorigo ◽  
R. A. M. de Jeu ◽  
W. Wagner ◽  
...  

Abstract. Combining information derived from satellite-based passive and active microwave sensors has the potential to offer improved retrievals of surface soil moisture variations at global scales. Here we propose a technique to take advantage of retrieval characteristics of passive (AMSR-E) and active (ASCAT) microwave satellite estimates over sparse-to-moderately vegetated areas to obtain an improved soil moisture product. To do this, absolute soil moisture values from AMSR-E and relative soil moisture derived from ASCAT are rescaled against a reference land surface model date set using a cumulative distribution function (CDF) matching approach. While this technique imposes the bias of the reference to the rescaled satellite products, it adjusts both satellite products to the same range and almost preserves the correlation between satellite products and in situ measurements. Comparisons with in situ data demonstrated that over the regions where the correlation coefficient between rescaled AMSR-E and ASCAT is above 0.65 (hereafter referred to as transitional regions), merging the different satellite products together increases the number of observations while minimally changing the accuracy of soil moisture retrievals. These transitional regions also delineate the boundary between sparsely and moderately vegetated regions where rescaled AMSR-E and ASCAT are respectively used in the merged product. Thus the merged product carries the advantages of better spatial coverage overall and increased number of observations particularly for the transitional regions. The combination approach developed in this study has the potential to be applied to existing microwave satellites as well as to new microwave missions. Accordingly, a long-term global soil moisture dataset can be developed and extended, enhancing basic understanding of the role of soil moisture in the water, energy and carbon cycles.


Sign in / Sign up

Export Citation Format

Share Document