More than 10 years of The International Soil Moisture Network (ISMN) in support of EO science

Author(s):  
Irene Himmelbauer ◽  
Daniel Aberer ◽  
Lukas Schremmer ◽  
Ivana Petrakovic ◽  
Wouter A. Dorigo ◽  
...  

<p><span>The International Soil Moisture Network (ISMN, </span><span>) is a unique centralized global and open freely available in-situ soil moisture data hosting facility. Initiated in 2009 as a community effort through international cooperation (ESA, GEWEX, GTN-H, WMO, etc.), with continuous financial support through the European Space Agency (formerly SMOS and IDEAS+ programs, currently QA4EO program), the ISMN is more than ever an essential means for validating and improving global satellite soil moisture products, land surface -, climate- , and hydrological models.</span></p><p><span>Following, building and improving standardized measurement protocols and quality techniques, the network evolved into a widely used, reliable and consistent in-situ data source (surface and sub-surface) collected by a myriad off data organizations on a voluntary basis. 66 networks are participating (status January 2021) with more than 2750 stations distributed on a global scale and a steadily increasing number of user community, > 3200 registered users strong. Time series with hourly timestamps from 1952 – up to near real time are stored in the database and are available through the ISMN web portal for free (</span><span>), including daily near-real time updates from 6 networks (~ 1000 stations). </span></p><p><span>About 10’000 datasets are available through the web portal and t</span><span>he number of</span> <span>networks and stations covered by the ISMN is still growing as well as most datasets, that are already contained in the database, are continuously being updated.</span></p><p><span>The ISMN evolved in the past decade into a platform of benchmark data for several operational services such as ESA CCI Soil Moisture, the Copernicus Climate Change (C3S), the Copernicus Global Land Service (CGLS), the online validation service Quality Assurance for Soil Moisture (QA4SM) and many more applications, services, products and tools. In general, ISMN data is widely used in a variety of scientific fields with hundreds of studies making use of ISMN data (e.g. climate, water, agriculture, disasters, ecosystems, weather, biodiversity, etc.). </span></p><p><span>In this session, we want to inform ISMN users about the evolution of the ISMN over the past decade, including a description of network and dataset updates and new quality control procedures. Besides, we provide a review of existing literature making use of ISMN data in order to identify current limitations in data availability</span><span>, </span><span>functionality and challenges in data usage in order to help shape potential future modes in operation of this unique community- based data repository.</span></p>

2020 ◽  
Author(s):  
Daniel Aberer ◽  
Irene Himmelbauer ◽  
Lukas Schremmer ◽  
Ivana Petrakovic ◽  
Wouter Dorigo ◽  
...  

<p>The International Soil Moisture Network (ISMN, https://ismn.geo.tuwien.ac.at/) is an international cooperation to establish and maintain a unique centralized global data hosting facility, making in situ soil moisture data easily and freely accessible. This database is an essential means for validating and improving global satellite soil moisture products, land surface -, climate- , and hydrological models. </p><p>In situ measurements are crucial to calibrate and validate satellite soil moisture products. For a meaningful comparison with remotely sensed data and reliable validation results, the quality of the reference data is essential. The various independent local and regional in situ networks often do not follow standardized measurement techniques or protocols, collecting their data in different units, at different depths and at various sampling rates. Besides, quality control is rarely applied and accessing the data is often not easy or feasible.</p><p>The ISMN has been created to address the above-mentioned issues and is building a stable base to assist EO products, services and models. Within the ISMN, in situ soil moisture measurements (surface and sub-surface) are collected, harmonized in terms of units and sampling rates, advanced quality control is applied and the data is then stored in a database and made available online, where users can download it for free.</p><p>Founded in 2009, the ISMN has grown to a widely used in situ data source including 61 networks with more than 2600 stations distributed on a global scale and a steadily growing user community > 3200 registered users strong. Time series with hourly timestamps from 1952 – up to near real time are stored in the database and are available through the ISMN web portal, including daily near-real time updates from 6 networks (> 900 stations). With continuous financial support through the European Space Agency (formerly SMOS and IDEAS+ programs, currently QA4EO program), the ISMN evolved into a platform of benchmark data for several operational services such as ESA CCI Soil Moisture, the Copernicus Climate Change (C3S), the Copernicus Global Land Service (CGLS) and the online validation service Quality Assurance for Soil Moisture (QA4SM). In general, ISMN data is widely used in a variety of scientific fields (e.g. climate, water, agriculture, disasters, ecosystems, weather, biodiversity, etc.).</p><p>About 10’000 datasets are available through the web portal. However, the spatial coverage of in situ observations still needs to be improved. For example, in Africa and South America only sparse data are available. Innovative ideas, such as the inclusion of soil moisture data from low cost sensors (eventually) collected by citizen scientists, holds the potential of closing this gap, thus providing new information and knowledge.</p><p>In this session, we give an overview of the ISMN, its unique features and its benefits for validating satellite soil moisture products.</p>


2021 ◽  
Author(s):  
Ivana Petrakovic ◽  
Irene Himmelbauer ◽  
Daniel Aberer ◽  
Lukas Schremmer ◽  
Philippe Goryl ◽  
...  

<p>The International Soil Moisture Network (ISMN, https://ismn.earth) is international cooperation to establish and maintain a unique centralized global data hosting facility, making in-situ soil moisture data easily and freely accessible (Dorigo et al., 2021). Initiated in 2009 as a community effort through international cooperation (ESA, GEWEX, GTN-H, GCOS, TOPC, HSAF, QA4SM, C3S, etc.), the ISMN is an essential means for validating and improving global satellite soil moisture products, land surface-, climate-, and hydrological models. <br><br>The ISMN is a widely used, reliable, and consistent in-situ data source (surface and sub-surface) collected by a myriad of data organizations on a voluntary basis.  The in-situ soil moisture measurements are collected, harmonized in terms of units and sampling rates, advanced quality control is applied and the data is then stored in a database and made available online, where users can download it for free. Currently, 71 networks are participating with more than 2800 stations distributed on a global scale and a steadily increasing number of user communities. Long term time series with mainly hourly timestamps from 1952 – up to near-real-time are stored in the database, including daily near-real-time updates. Besides soil moisture in our database are stored other meteorological variables as well (air temperature, soil temperature, precipitation, snow depth, etc.).<br><br>The ISMN provides benchmark data for several operational services such as ESA CCI Soil Moisture, the Copernicus Climate Change (C3S) and Global Land Service (CGLS), and the online validation tool QA4SM. ISMN data is widely used in a variety of scientific fields (e.g., climate, water, agriculture, disasters, ecosystems, weather, biodiversity, etc).<br><br>To validate the land surface representations of meteorological forecasting models soil moisture from the ISMN has often been used. The development of various generations of TESSEL models used both in the Integrated Forecasting Systems and reanalysis products of ECMWF, greatly profited from soil moisture and temperature data from the ISMN. Using ISMN data several studies assessed the soil moisture skill of the Weather Research and Forecasting Model (WRF) and assessed the forecast skill or new implementations of numerical weather prediction models.<br><br>We greatly acknowledge the financial support provided by ESA through various projects: SMOSnet International Soil Moisture Network, IDEAS+, and QA4EO.<br><br>To ensure a long-term funding for the ISMN operations, several ideas were perused together with ESA. A partner for this task could be found within the International Center for Water Resources and Global Change (ICWRGC) hosted by the German Federal Institute of Hydrology (BfG). <br><br>In this session, we want to give an overview and future outlook of the ISMN, highlighting its unique features and discuss challenges in supporting the hydrological research community in need of freely available, standardized, and quality-controlled datasets. </p>


2020 ◽  
Vol 12 (17) ◽  
pp. 2861
Author(s):  
Jifu Yin ◽  
Xiwu Zhan ◽  
Jicheng Liu

Soil moisture plays a vital role for the understanding of hydrological, meteorological, and climatological land surface processes. To meet the need of real time global soil moisture datasets, a Soil Moisture Operational Product System (SMOPS) has been developed at National Oceanic and Atmospheric Administration to produce a one-stop shop for soil moisture observations from all available satellite sensors. What makes the SMOPS unique is its near real time global blended soil moisture product. Since the first version SMOPS publicly released in 2010, the SMOPS has been updated twice based on the users’ feedbacks through improving retrieval algorithms and including observations from new satellite sensors. The version 3.0 SMOPS has been operationally released since 2017. Significant differences in climatological averages lead to remarkable distinctions in data quality between the newest and the older versions of SMOPS blended soil moisture products. This study reveals that the SMOPS version 3.0 has overwhelming advantages of reduced data uncertainties and increased correlations with respect to the quality controlled in situ measurements. The new version SMOPS also presents more robust agreements with the European Space Agency’s Climate Change Initiative (ESA_CCI) soil moisture datasets. With the higher accuracy, the blended data product from the new version SMOPS is expected to benefit the hydrological, meteorological, and climatological researches, as well as numerical weather, climate, and water prediction operations.


2020 ◽  
Author(s):  
Irene Himmelbauer ◽  
Daniel Aberer ◽  
Lukas Schremmer ◽  
Ivana Petrakovic ◽  
Luca Zappa ◽  
...  

<p><span>The International Soil Moisture Network (ISMN, </span><span></span><span>) is an international cooperation to establish and maintain an open-source global data hosting facility, providing in-situ soil moisture data as well as accompanying soil variables. This database is an essential means for validating and improving global satellite soil moisture products as well as land surface -, climate- , and hydrological models.</span></p><p><span>For hydrological validation, the quality of used in-situ data is essential. The various independent local and regional in situ networks often do not follow standardized measurement techniques or protocols, collect their data in different units, at different depths and at various sampling rates. Besides, quality control is rarely applied and accessing the data is often not easy or feasible.</span></p><p><span>The ISMN was created to address the above-mentioned issues. Within the ISMN, in situ soil moisture measurements (surface and sub-surface) are collected, harmonized in terms of units and sampling rates, advanced quality control is applied and the data is then stored in a database and made available online, where users can download it for free. </span></p><p><span>Since its establishment in 2009 and with continuous financial support through the European Space Agency (ESA), the ISMN evolved into a widely used in situ data source growing continuously (in terms of data volume and users). Historic measurements starting in 1952 up to near–real time are available through the ISMN web portal. Currently, the ISMN consists of 60 networks with more than 2500 stations spread all over the globe. With a </span><span><span>steadily growing user community more than 3200 registered users strong</span></span><span> the value of the ISMN as a well-established and rich source of in situ soil moisture observations is well recognized. In fact, the ISMN is widely used in variety of scientific fields (e.g. climate, water, agriculture, disasters, ecosystems, weather, biodiversity, etc.). </span></p><p> <span>Our partner networks range from networks with a handful of stations to networks that are composed of over 400 sites, are supported with half yearly provider reports on statistical data about their network (e.g.: data download statistic, flagging statistic, etc.). </span></p><p><span>About 10’000 datasets are available through the web portal. However, the spatial coverage of in situ observations still needs to be improved. For example, in Africa and South America only sparse data are available. Innovative ideas, such as the inclusion of soil moisture data from low cost sensors (GROW observatory ) collected by citizen scientists, holds the potential of closing this gap, thus providing new information and knowledge.</span></p><p><span>In this session , we want to give an overview of the ISMN, its unique features and its support of data provider, who are willing to openly share their data, as well as hydrological researcher in need of freely available datasets.</span></p>


2021 ◽  
Author(s):  
Wouter Dorigo ◽  
Irene Himmelbauer ◽  
Daniel Aberer ◽  
Lukas Schremmer ◽  
Ivana Petrakovic ◽  
...  

Abstract. In 2009, the International Soil Moisture Network (ISMN) was initiated as a community effort, funded by the European Space Agency, to serve as a centralised data hosting facility for globally available in situ soil moisture measurements (Dorigo et al., 2011a, b). The ISMN brings together in situ soil moisture measurements collected and freely shared by a multitude of organisations, harmonizes them in terms of units and sampling rates, applies advanced quality control, and stores them in a database. Users can freely retrieve the data from this database through an online web portal (https://ismn.earth). Meanwhile, the ISMN has evolved into the primary in situ soil moisture reference database worldwide, as evidenced by more than 3000 active users and over 1000 scientific publications referencing the data sets provided by the network. As of December 2020, the ISMN now contains data of 65 networks and 2678 stations located all over the globe, with a time period spanning from 1952 to present.The number of networks and stations covered by the ISMN is still growing and many of the data sets contained in the database continue to be updated. The main scope of this paper is to inform readers about the evolution of the ISMN over the past decade,including a description of network and data set updates and quality control procedures. A comprehensive review of existing literature making use of ISMN data is also provided in order to identify current limitations in functionality and data usage, and to shape priorities for the next decade of operations of this unique community-based data repository.


2016 ◽  
Vol 20 (10) ◽  
pp. 4191-4208 ◽  
Author(s):  
Markus Enenkel ◽  
Christoph Reimer ◽  
Wouter Dorigo ◽  
Wolfgang Wagner ◽  
Isabella Pfeil ◽  
...  

Abstract. The soil moisture dataset that is generated via the Climate Change Initiative (CCI) of the European Space Agency (ESA) (ESA CCI SM) is a popular research product. It is composed of observations from 10 different satellites and aims to exploit the individual strengths of active (radar) and passive (radiometer) sensors, thereby providing surface soil moisture estimates at a spatial resolution of 0.25°. However, the annual updating cycle limits the use of the ESA CCI SM dataset for operational applications. Therefore, this study proposes an adaptation of the ESA CCI product for daily global updates via satellite-derived near-real-time (NRT) soil moisture observations. In order to extend the ESA CCI SM dataset from 1978 to present we use NRT observations from the Advanced Scatterometer on-board the two MetOp satellites and the Advanced Microwave Scanning Radiometer 2 on-board GCOM-W. Since these NRT observations do not incorporate the latest algorithmic updates, parameter databases and intercalibration efforts, by nature they offer a lower quality than reprocessed offline datasets. In addition to adaptations of the ESA CCI SM processing chain for NRT datasets, the quality of the NRT datasets is a main source of uncertainty. Our findings indicate that, despite issues in arid regions, the new CCI NRT dataset shows a good correlation with ESA CCI SM. The average global correlation coefficient between CCI NRT and ESA CCI SM (Pearson's R) is 0.80. An initial validation with 40 in situ observations in France, Spain, Senegal and Kenya yields an average R of 0.58 and 0.49 for ESA CCI SM and CCI NRT, respectively. In summary, the CCI NRT product is nearly as accurate as the existing ESA CCI SM product and, therefore, of significant value for operational applications such as drought and flood forecasting, agricultural index insurance or weather forecasting.


2020 ◽  
Vol 12 (12) ◽  
pp. 2030
Author(s):  
Bo Jiang ◽  
Hongbo Su ◽  
Kai Liu ◽  
Shaohui Chen

Soil moisture (SM) plays a crucial role in the water and energy flux exchange between the atmosphere and the land surface. Remote sensing and modeling are two main approaches to obtain SM over a large-scale area. However, there is a big difference between them due to algorithm, spatial-temporal resolution, observation depth and measurement uncertainties. In this study, an assessment of the comparison of two state-of-the-art remotely sensed SM products, Soil Moisture Active Passive (SMAP) and European Space Agency Climate Change Initiative (ESACCI), and one land surface modeled dataset from the North American Land Data Assimilation System project phase 2 (NLDAS-2), were conducted using 17 permanent SM observation sites located in the Southern Great Plains (SGP) in the U.S. We first compared the daily mean SM of three products with in-situ measurements; then, we decompose the raw time series into a short-term seasonal part and anomaly by using a moving smooth window (35 days). In addition, we calculate the daily spatial difference between three products based on in-situ data and assess their temporal evolution. The results demonstrate that (1) in terms of temporal correlation R, the SMAP (R = 0.78) outperforms ESACCI (R = 0.62) and NLDAS-2 (R = 0.72) overall; (2) for the seasonal component, the correlation R of SMAP still outperforms the other two products, and the correlation R of ESACCI and NLDAS-2 have not improved like the SMAP; as for anomaly, there is no difference between the remotely sensed and modeling data, which implies the potential for the satellite products to capture the variations of short-term rainfall events; (3) the distribution pattern of spatial bias is different between the three products. For NLDAS-2, it is strongly dependent on precipitation; meanwhile, the spatial distribution of bias represents less correlation with the precipitation for two remotely sensed products, especially for the SMAP. Overall, the SMAP was superior to the other two products, especially when the SM was of low value. The difference between the remotely sensed and modeling products with respect to the vegetation type might be an important reason for the errors.


2021 ◽  
Author(s):  
Dominik Michel ◽  
Martin Hirschi ◽  
Sonia I. Seneviratne

<p>Climate projections indicate an increasing risk of dry and hot episodes in Central Europe, including in Switzerland. However, models display a large spread in projections of changes in summer drying, highlighting the importance of related observations to evaluate climate models and constrain projections. Land hydrological variables play an essential role for these projections. This is particularly the case for soil moisture and land evaporation, which are directly affecting the development of droughts and heatwaves in both present and future.</p><p>The recent 2020 spring as well as 2015 and 2018 summer droughts in Switzerland have highlighted the importance of monitoring and assessing changes of soil moisture and land evaporation, which are strongly related to drought impacts on agriculture, forestry, and ecosystems. The country was affected by major drought and heatwave conditions in 2015 and 2018. While the meteorological conditions started to recover at the end of the summer, the soil moisture conditions (and runoff) continued to be anomalously low for most of the fall. This illustrates the decoupling between meteorological drought and soil moisture drought conditions related to the intrinsic memory of the soil.</p><p>The only Switzerland-wide soil moisture monitoring programme currently in place is the SwissSMEX (Swiss Soil Moisture Experiment) measurement network. It was initiated in 2008 and comprises 19 soil moisture measurement profiles at 17 different sites (grassland, forest and arable land). Since 2017, seven grassland SwissSMEX sites were complemented with land evaporation measurements from mini-lysimeters.</p><p>First, a quality assessment and inter-comparison of the in-situ soil moisture and land evaporation observations at 12 grassland sites revealed substantial discrepancies between different sensor types in terms of absolute values and data availability. A standard procedure for processing and interpreting the SwissSMEX data is thus being established. Second, analyses have been carried out comparing the SwissSMEX measurements with gridded remote-sensing and reanalysis products that provide near real time soil moisture data. In particular, the European Space Agency (ESA) Climate Change Initiative (CCI) surface soil moisture product (ESA-CCI soil moisture) as well as the new ECMWF reanalysis ERA5 are considered. The seasonal evolution of the soil moisture anomalies (with respect to the long-term mean) show for 2020 two pronounced phases of dryness. These are consistently represented in SwissSMEX in-situ observations and ERA5. Also the other recent drought events of 2015 and 2018 show a similar temporal evolution in both datasets. The response of ESA-CCI surface soil moisture is less pronounced, more variable and also dependent on the measurement methodology, i.e., active or passive microwave remote sensing.</p><p>These first analyses provide useful insights in order to provide near-real time monitoring, enhance process understanding at the national scale and a better preparedness for future droughts.</p>


2020 ◽  
Vol 12 (17) ◽  
pp. 2819
Author(s):  
Mozhdeh Jamei ◽  
Mohammad Mousavi Baygi ◽  
Ebrahim Asadi Oskouei ◽  
Ernesto Lopez-Baeza

The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) mission with the MIRAS (Microwave Imaging Radiometer using Aperture Synthesis) L-band radiometer provides global soil moisture (SM) data. SM data and products from remote sensing are relatively new, but they are providing significant observations for weather forecasting, water resources management, agriculture, land surface, and climate models assessment, etc. However, the accuracy of satellite measurements is still subject to error from the retrieval algorithms and vegetation cover. Therefore, the validation of satellite measurements is crucial to understand the quality of retrieval products. The objectives of this study, precisely framed within this mission, are (i) validation of the SMOS Level 1C Brightness Temperature (TBSMOS) products in comparison with simulated products from the L-MEB model (TBL-MEB) and (ii) validation of the SMOS Level 2 SM (SMSMOS) products against ground-based measurements at 10 significant Iranian agrometeorological stations. The validations were performed for the period of January 2012 to May 2015 over the Southwest and West of Iran. The results of the validation analysis showed an RMSE ranging between 9 to 13 K and a strong correlation (R = 0.61–0.84) between TBSMOS and TBL-MEB at all stations. The bias values (0.1 to 7.5 K) showed a slight overestimation for TBSMOS at most of the stations. The results of SMSMOS validation indicated a high agreement (RMSE = 0.046–0.079 m3 m−3 and R = 0.65–0.84) between the satellite SM and in situ measurements over all the stations. The findings of this research indicated that SMSMOS shows high accuracy and agreement with in situ measurements which validate its potential. Due to the limitation of SM measurements in Iran, the SMOS products can be used in different scientific and practical applications at different Iranian study areas.


2021 ◽  
Vol 25 (11) ◽  
pp. 5749-5804
Author(s):  
Wouter Dorigo ◽  
Irene Himmelbauer ◽  
Daniel Aberer ◽  
Lukas Schremmer ◽  
Ivana Petrakovic ◽  
...  

Abstract. In 2009, the International Soil Moisture Network (ISMN) was initiated as a community effort, funded by the European Space Agency, to serve as a centralised data hosting facility for globally available in situ soil moisture measurements (Dorigo et al., 2011b, a). The ISMN brings together in situ soil moisture measurements collected and freely shared by a multitude of organisations, harmonises them in terms of units and sampling rates, applies advanced quality control, and stores them in a database. Users can freely retrieve the data from this database through an online web portal (https://ismn.earth/en/, last access: 28 October 2021). Meanwhile, the ISMN has evolved into the primary in situ soil moisture reference database worldwide, as evidenced by more than 3000 active users and over 1000 scientific publications referencing the data sets provided by the network. As of July 2021, the ISMN now contains the data of 71 networks and 2842 stations located all over the globe, with a time period spanning from 1952 to the present. The number of networks and stations covered by the ISMN is still growing, and approximately 70 % of the data sets contained in the database continue to be updated on a regular or irregular basis. The main scope of this paper is to inform readers about the evolution of the ISMN over the past decade, including a description of network and data set updates and quality control procedures. A comprehensive review of the existing literature making use of ISMN data is also provided in order to identify current limitations in functionality and data usage and to shape priorities for the next decade of operations of this unique community-based data repository.


Sign in / Sign up

Export Citation Format

Share Document