Dependencies of Polychlorinated Biphenyl Concentrations Measured at the Great Lakes on Climate Variables

Author(s):  
Sandy Ubl ◽  
Martin Scheringer

<p>Polychlorinated biphenyls (PCBs) are persistent and hazardous chemicals that are still detected in the atmosphere and other environmental compartments although their production was banned several decades ago. At the Great Lakes region PCBs have been monitored via the IADN network since 1993. In this study, we report results from seven different PCB congeners measured at six different sites around the Great Lakes. The PCBs exhibit a strong seasonal cycle with highest concentrations in summer and lowest concentrations in winter. The concentrations measured in Chicago and Cleveland are higher compared to the concentrations reported from more remote stations. We evaluated the correlations for the seven PCB congeners at each station. PCB-53,-101,-118 and -138 are highly correlated at each of the six stations. PCB-180 is the least correlated with all the other PCBs. This is explicitly true for Eagle Harbor, where PCB-180 and -153 are not correlated with the other 6 PCBs. This may be explained by the less pronounced seasonal cycle of these heavier PCBs at Eagle Harbor. We observed significant correlations between PCB-28 concentrations at the remote stations, but PCB concentrations at the stations of Chicago and Cleveland are only poorly correlated with PCB concentrations at the other stations. The weak correlation of the PCB concentrations measured at the different stations and the relatively high concentrations of the PCB congeners at each station indicate that local conditions and small scale processes (sources, temperature, wind direction, wind speed) dictate the spatial distribution of the  PCBs. We will feed available data on temperature, wind speed, wind direction, emissions, precipitation, ice cover of the Great Lakes and large scale atmospheric teleconnection patterns into a General Additive Model (GAM) to further investigate the relationships between the measured PCB concentrations and selected environmental conditions and atmospheric parameters.<span> </span></p>

1995 ◽  
Vol 7 (4) ◽  
pp. 409-420 ◽  
Author(s):  
Stig Jonsson

Between 18 January 1988 and 3 June 1989, an automatic weather station recorded 13 different weather parameters every 3 h on a blue-ice area located in Scharffenbergbotnen, a large cirque in central Heimefrontfjella 300 km from the Weddell Sea coast. The first part of the paper reports on annual and monthly data regarding air temperature, air pressure, wind speed and wind direction, and a comparison is also made with corresponding data from the Neumayer and Halley stations. The second part deals mainly with winter (i.e. April–September) conditions in Scharffenbergbotnen. They seem, at least during 1988–89, to have been characterized by a large-scale (30–40 days) and, superimposed on the large-scale, a small-scale (3–4 days) co-variation of air temperature, air pressure and wind speed. The large-scale variation was earlier found to be synoptically forced. This paper shows that synoptic forcing exists also on smaller time scales. Pools of cold, stagnant air are regularly formed in the cirque only to be blown away by katabatic winds triggered by small variations in the synoptic pressure field. When this happens the air temperature increases by more than 20°C and the wind direction swings from east towards south-east. When low pressures dominate in the eastern part of the Weddell Sea, the katabatic winds become very strong, but weaker wind pulses also take place when the synoptic pressure gradient is directed towards the north-east. It therefore seems as if these very regular katabatic events are forced both by synoptic-scale pressure gradients and gradients due to the sloped inversion.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3598
Author(s):  
Sara Russo ◽  
Pasquale Contestabile ◽  
Andrea Bardazzi ◽  
Elisa Leone ◽  
Gregorio Iglesias ◽  
...  

New large-scale laboratory data are presented on a physical model of a spar buoy wind turbine with angular motion of control surfaces implemented (pitch control). The peculiarity of this type of rotating blade represents an essential aspect when studying floating offshore wind structures. Experiments were designed specifically to compare different operational environmental conditions in terms of wave steepness and wind speed. Results discussed here were derived from an analysis of only a part of the whole dataset. Consistent with recent small-scale experiments, data clearly show that the waves contributed to most of the model motions and mooring loads. A significant nonlinear behavior for sway, roll and yaw has been detected, whereas an increase in the wave period makes the wind speed less influential for surge, heave and pitch. In general, as the steepness increases, the oscillations decrease. However, higher wind speed does not mean greater platform motions. Data also indicate a significant role of the blade rotation in the turbine thrust, nacelle dynamic forces and power in six degrees of freedom. Certain pairs of wind speed-wave steepness are particularly unfavorable, since the first harmonic of the rotor (coupled to the first wave harmonic) causes the thrust force to be larger than that in more energetic sea states. The experiments suggest that the inclusion of pitch-controlled, variable-speed blades in physical (and numerical) tests on such types of structures is crucial, highlighting the importance of pitch motion as an important design factor.


2015 ◽  
Vol 112 (19) ◽  
pp. 6236-6241 ◽  
Author(s):  
Thomas M. Neeson ◽  
Michael C. Ferris ◽  
Matthew W. Diebel ◽  
Patrick J. Doran ◽  
Jesse R. O’Hanley ◽  
...  

In many large ecosystems, conservation projects are selected by a diverse set of actors operating independently at spatial scales ranging from local to international. Although small-scale decision making can leverage local expert knowledge, it also may be an inefficient means of achieving large-scale objectives if piecemeal efforts are poorly coordinated. Here, we assess the value of coordinating efforts in both space and time to maximize the restoration of aquatic ecosystem connectivity. Habitat fragmentation is a leading driver of declining biodiversity and ecosystem services in rivers worldwide, and we simultaneously evaluate optimal barrier removal strategies for 661 tributary rivers of the Laurentian Great Lakes, which are fragmented by at least 6,692 dams and 232,068 road crossings. We find that coordinating barrier removals across the entire basin is nine times more efficient at reconnecting fish to headwater breeding grounds than optimizing independently for each watershed. Similarly, a one-time pulse of restoration investment is up to 10 times more efficient than annual allocations totaling the same amount. Despite widespread emphasis on dams as key barriers in river networks, improving road culvert passability is also essential for efficiently restoring connectivity to the Great Lakes. Our results highlight the dramatic economic and ecological advantages of coordinating efforts in both space and time during restoration of large ecosystems.


2021 ◽  
Author(s):  
Jianhao Zhang ◽  
Paquita Zuidema

Abstract. Many studies examining shortwave-absorbing aerosol-cloud interactions over the southeast Atlantic apply a seasonal averaging. This disregards a meteorology that raises the mean altitude of the smoke layer from July to October. This study details the month-by-month changes in cloud properties and the large-scale environment as a function of the biomass-burning aerosol loading at Ascension Island from July to October, based on measurements from Ascension Island (8º S, 14.5º W), satellite retrievals and reanalysis. In July and August, variability in the smoke loading predominantly occurs in the boundary layer. During both months, the low-cloud fraction is less and is increasingly cumuliform when more smoke is present, with the exception of a late morning boundary layer deepening that encourages a short-lived cloud development. The meteorology varies little, suggesting aerosol-cloud interactions consistent with a boundary-layer semi-direct effect can explain the cloudiness changes. September marks a transition month during which mid-latitude disturbances can intrude into the Atlantic subtropics, constraining the land-based anticyclonic circulation transporting free-tropospheric aerosol to closer to the coast. Stronger boundary layer winds help deepen, dry, and cool the boundary layer near the main stratocumulus deck compared to that on days with high smoke loadings, with stratocumulus reducing everywhere but at the northern deck edge. Longwave cooling rates generated by a sharp water vapor gradient at the aerosol layer top facilitates small-scale vertical mixing, and could help to maintain a better-mixed September free troposphere. The October meteorology is more singularly dependent on the strength of the free-tropospheric winds advecting aerosol offshore. Free-tropospheric aerosol is less, and moisture variability more, compared to September. Low-level clouds increase and are more stratiform, when the smoke loadings are higher. The increased free-tropospheric moisture can help sustain the clouds through reducing evaporative drying during cloud-top entrainment. Enhanced subsidence above the coastal upwelling region increasing cloud droplet number concentrations may further prolong cloud lifetime through microphysical interactions. Reduced subsidence underneath stronger free-tropospheric winds at Ascension supports slightly higher cloud tops during smokier conditions. Overall the monthly changes in the large-scale aerosol and moisture vertical structure act to amplify the seasonal cycle in low-cloud amount and morphology, raising a climate importance as cloudiness changes dominate changes in the top-of-atmosphere radiation budget.


2015 ◽  
Vol 2 (1) ◽  
pp. 25-36
Author(s):  
Otieno Fredrick Onyango ◽  
Sibomana Gaston ◽  
Elie Kabende ◽  
Felix Nkunda ◽  
Jared Hera Ndeda

Wind speed and wind direction are the most important characteristics for assessing wind energy potential of a location using suitable probability density functions. In this investigation, a hybrid-Weibull probability density function was used to analyze data from Kigali, Gisenyi, and Kamembe stations. Kigali is located in the Eastern side of Rwanda while Gisenyi and Kamembe are to the West. On-site hourly wind speed and wind direction data for the year 2007 were analyzed using Matlab programmes. The annual mean wind speed for Kigali, Gisenyi, and Kamembe sites were determined as 2.36m/s, 2.95m/s and 2.97m/s respectively, while corresponding dominant wind directions for the stations were ,  and  respectively. The annual wind power density of Kigali was found to be  while the power densities for Gisenyi and Kamembe were determined as and . It is clear, the investigated regions are dominated by low wind speeds thus are suitable for small-scale wind power generation especially at Kamembe site.


2012 ◽  
Vol 25 (19) ◽  
pp. 6684-6700 ◽  
Author(s):  
Adam H. Monahan

Abstract The temporal autocorrelation structures of sea surface vector winds and wind speeds are considered. Analyses of scatterometer and reanalysis wind data demonstrate that the autocorrelation functions (acf) of surface zonal wind, meridional wind, and wind speed generally drop off more rapidly in the midlatitudes than in the low latitudes. Furthermore, the meridional wind component and wind speed generally decorrelate more rapidly than the zonal wind component. The anisotropy in vector wind decorrelation scales is demonstrated to be most pronounced in the storm tracks and near the equator, and to be a feature of winds throughout the depth of the troposphere. The extratropical anisotropy is interpreted in terms of an idealized kinematic eddy model as resulting from differences in the structure of wind anomalies in the directions along and across eddy paths. The tropical anisotropy is interpreted in terms of the kinematics of large-scale equatorial waves and small-scale convection. Modeling the vector wind fluctuations as Gaussian, an explicit expression for the wind speed acf is obtained. This model predicts that the wind speed acf should decay more rapidly than that of at least one component of the vector winds. Furthermore, the model predicts a strong dependence of the wind speed acf on the ratios of the means of vector wind components to their standard deviations. These model results are shown to be broadly consistent with the relationship between the acf of vector wind components and wind speed, despite the presence of non-Gaussian structure in the observed surface vector winds.


2018 ◽  
Vol 26 (S2) ◽  
pp. S55-S67 ◽  
Author(s):  
Erin Leahey

This paper synthesizes findings from two studies the author conducted that examine how engagement in interdisciplinary research (IDR) influences scholars’ careers. Results from these two studies, one large-scale and quantitative and the other small-scale and qualitative, provide a much needed empirical assessment of IDR’s effects on individual careers. In essence, they provide a nice antidote (and some caution) to the rhetoric and enthusiasm surrounding IDR. My co-authors of these studies and I find that engaging in interdisciplinary research increases a scholar’s visibility in terms of citations, but also presents challenges, including reduced productivity, cognitive challenges, lack of support, extra time and commitment, and framing of one’s work. This paper concludes by discussing the policy implications of this research.


2008 ◽  
Vol 26 (12) ◽  
pp. 3897-3912 ◽  
Author(s):  
A. D. DeJong ◽  
A. J. Ridley ◽  
C. R. Clauer

Abstract. During steady magnetospheric convection (SMC) events the magnetosphere is active, yet there are no data signatures of a large scale reconfiguration, such as a substorm. While this definition has been used for years it fails to elucidate the true physics that is occurring within the magnetosphere, which is that the dayside merging rate and the nightside reconnection rate balance. Thus, it is suggested that these events be renamed Balanced Reconnection Intervals (BRIs). This paper investigates four diverse BRI events that support the idea that new name for these events is needed. The 3–4 February 1998 event falls well into the classic definition of an SMC set forth by Sergeev et al. (1996), while the other challenge some previous notions about SMCs. The 15 February 1998 event fails to end with a substorm expansion and concludes as the magnetospheric activity slowly quiets. The third event, 22–23 December 2000, begins with a slow build up of magnetospheric activity, thus there is no initiating substorm expansion. The last event, 17 February 1998, is more active (larger AE, AL and cross polar cap potential) than previously studied SMCs. It also has more small scale activity than the other events studied here.


2010 ◽  
Vol 23 (2) ◽  
pp. 255-281 ◽  
Author(s):  
Larry W. O’Neill ◽  
Dudley B. Chelton ◽  
Steven K. Esbensen

Abstract The effects of surface wind speed and direction gradients on midlatitude surface vorticity and divergence fields associated with mesoscale sea surface temperature (SST) variability having spatial scales of 100–1000 km are investigated using vector wind observations from the SeaWinds scatterometer on the Quick Scatterometer (QuikSCAT) satellite and SST from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) Aqua satellite. The wind–SST coupling is analyzed over the period June 2002–August 2008, corresponding to the first 6+ years of the AMSR-E mission. Previous studies have shown that strong wind speed gradients develop in response to persistent mesoscale SST features associated with the Kuroshio Extension, Gulf Stream, South Atlantic, and Agulhas Return Current regions. Midlatitude SST fronts also significantly modify surface wind direction; the surface wind speed and direction responses to typical SST differences of about 2°–4°C are, on average, about 1–2 m s−1 and 4°–8°, respectively, over all four regions. Wind speed perturbations are positively correlated and very nearly collocated spatially with the SST perturbations. Wind direction perturbations, however, are displaced meridionally from the SST perturbations, with cyclonic flow poleward of warm SST and anticyclonic flow poleward of cool SST. Previous observational analyses have shown that small-scale perturbations in the surface vorticity and divergence fields are related linearly to the crosswind and downwind components of the SST gradient, respectively. When the vorticity and divergence fields are analyzed in curvilinear natural coordinates, the wind speed contributions to the SST-induced vorticity and divergence depend equally on the crosswind and downwind SST gradients, respectively. SST-induced wind direction gradients also significantly modify the vorticity and divergence fields, weakening the vorticity response to crosswind SST gradients while enhancing the divergence response to downwind SST gradients.


2011 ◽  
Vol 24 (3) ◽  
pp. 867-880 ◽  
Author(s):  
Jouni Räisänen ◽  
Jussi S. Ylhäisi

Abstract The general decrease in the quality of climate model output with decreasing scale suggests a need for spatial smoothing to suppress the most unreliable small-scale features. However, even if correctly simulated, a large-scale average retained by the smoothing may not be representative of the local conditions, which are of primary interest in many impact studies. Here, the authors study this trade-off using simulations of temperature and precipitation by 24 climate models within the Third Coupled Model Intercomparison Project, to find the scale of smoothing at which the mean-square difference between smoothed model output and gridbox-scale reality is minimized. This is done for present-day time mean climate, recent temperature trends, and projections of future climate change, using cross validation between the models for the latter. The optimal scale depends strongly on the number of models used, being much smaller for multimodel means than for individual model simulations. It also depends on the variable considered and, in the case of climate change projections, the time horizon. For multimodel-mean climate change projections for the late twenty-first century, only very slight smoothing appears to be beneficial, and the resulting potential improvement is negligible for practical purposes. The use of smoothing as a means to improve the sampling for probabilistic climate change projections is also briefly explored.


Sign in / Sign up

Export Citation Format

Share Document