Do pre-existing basement structures influence the geometry and growth of normal faults and rifts?

Author(s):  
Christopher Jackson ◽  
Luca Collanega ◽  
Thomas Phillips ◽  
Antje Lenhart ◽  
Edoseghe Osagiede ◽  
...  

<p>Rifts often evolve on a template of crystalline basement that may contain strong lithological and mechanical heterogeneities related to complex pre-rift tectonic histories. Numerous studies argue that reactivation of such pre-existing structures can influence the geometry and evolution of normal faults and rift physiography. However, in many cases: (i) it is unclear where, if at all, structures at the rift margin continue along-strike below the rift axis; and (ii) the precise geometric and kinematic relationship between pre-existing structures and newly formed normal faults is not well understood. These uncertainties reflect the fact that: (i) potential field data are typically of low-resolution, and thus cannot resolve the detailed morphology of shallow fault networks; (ii) field data cannot provide an accurate 3D image of intra-basement structures and the overlying rift; and (iii) seismic reflection data typically do not image deeply buried intra-basement structures. Understanding the kinematic as well as geometric relationship between intra-basement structures and rift-related fault networks is important for understanding plate motions and for undertaking stress inversions, given that paleo-extension directions (and sigma 3) are, in many rifted provinces, typically thought to lie normal to the dominant fault strike. </p><p> </p><p>We here tackle these problems using subsurface data from the Taranaki Basin, offshore New Zealand, and the northern North Sea, offshore west Norway. Our data provide excellent imaging of shallowly buried intra-basement structures, as well as cover-hosted normal faults and their associated pre- and syn-growth strata. We identify a range of intra-basement structures, both extensional and contractional,, and a range of geometric and kinematic interactions between intra-basement structures and cover normal faults. For example, some of the normal faults are physically connected to intra-basement structures oriented oblique to the regional extension direction. It is notable that, even in cases, intra-basement structures were apparently not extensionally reactivated during the later rift phase. Displacement maxima on cover faults occur at 100-200 m above the crystalline basement-cover interface, suggesting the former did not form due to simple extensional reactivation and upward propagation of pre-existing structures; rather, ‘passive’ basement structures somehow perturbed the regional stress field, leading to the development of normal faults whose strikes mimic those of the underlying pre-existing basement structures. Cover normal faults can also display a range of complex geometries related to the linkage of numerous, originally separate slip surfaces, and upward-bifurcation of strongly segmented fault systems. We also show that the timing of physical linkage between basement and cover structures can be recorded in the geometry of related growth strata, which document the switch from non-rotational to rotational faulting.</p><p> </p><p>Our analyses show that km-scale, intra-basement structures can control the nucleation and development of newly formed, rift-related normal faults, most likely due to a local perturbation of the regional stress field. Because of this, simply inverting fault strike for causal extension direction may be incorrect, especially in provinces where pre-existing, intra-basement structures occur. We also show that a detailed kinematic analysis is key to deciphering the temporal as well as the geometric relationships between structures developed at multiple structural levels.</p>

2020 ◽  
Author(s):  
Camille Daffos ◽  
Laurent Arbaret ◽  
Jean-Louis Bourdier ◽  
Charles Gumiaux

<p>The relationship between volcanic and tectonic activity is well known. The volcanic activity strongly depend on the geodynamic context. This relationship is well highlight for systems like monogenic, mostly basaltic, volcanic fields (Cebrià and al, 2011). However, for complex, polygenetic, volcanic systems, this relationship remains very poorly constrained. The Mont-Dore Plio-Quaternary volcanic complex (4.7 to 0.3 My) is one of such polygenetic volcanic fields. This alkaline volcanism is located in the French Central massif. We define three eruptive cycles: The Bourboule caldera (3.3 to 2.2 My); the Aiguiller complex in the north (2.5 to 1.5 My) and the Sancy stratovolcano with the Adventif massif in the south-east (1.5 to 0.3 My).</p><p>Analysis coupling Coulomb fractures and faults kinematics in the variscan basement and directions of volcanic centers alignments analysed by Hough transform method highlight a strong influence of the basement fracturing on volcanism distribution. The late-variscan N20 and N160 main fracture directions were reactivated as normal faults during the oligocene E-W rifting. This fault system continued to act from the Miocene to the present day uplift, associated with new N20, flat-lying, coulomb fractures relevant with a present-day NW-SE compressional regional stress field. During the La Bourboule caldera activity, new N60 and N130 fractures were activated, some acting as normal faults. The contemporaneous vertical dykes injected the volcanic deposits mainly along the N60 direction. This suggest that this local N60-N130 brittle network were formed during the successive collapses that formed the La Bourboule caldera. In the Aiguiller massif, the brittle network is mainly composed of N-S and E-W directions. The E-W direction include normal faults that structure the north flank of the Mont-Dore horst. N-S trending volcanic dykes and alignments of monogenic volcanic events along the E-W directions point out a strong control of the fracturation of the granitic horst on the volcanic activity in the Aiguiller massif. The Sancy volcano and the Massif Adventif are marked by dykes and alignment of volcanic events that mostly trend N20. Only few dykes measured in the central area of the Sancy stratovolcano exhibit dispersed, radial, directions suggesting a local contribution of the volcanic edifice on the superficial stress field.</p><p>This study point out the strong control by the regional tectonic stress field on the activity of the Mont-Dore Plio-Quaternary volcanic complex. Alignment of monogenic edifices and dykes along the associated N20/N160 regional brittle directions is also evidenced in the northern monogenic field of the Chaine des Puys (Boivin et al. 2017). In contrast, larger volcanic activity such as caldera collapses or the building of a strato-volcano perturb the regional stress field creating a specific superficial stress field with its own fracture and faults networks.</p><p> </p><p>Boivin et al. 2017. Volcanologie de la Chaîne des Puys. 6<sup>e</sup> édition. Carte 1/25.000, 120x90 ; notice 199 p.</p><p>Cebrià, J.M., Martin-Escorza, C., Lopez-Ruiz, J., Moran-Zenteno, D.J., and Martiny, B.M. Numerical recognition of alignments in monogenetic volcanic areas: Exemples from the Michoacan-Guanajuato Volcanic Field in Mexico and Calatrava in Spain. Journal of Volcanology and Geothermal Research. 2011,201, 73-82.</p>


Author(s):  
Zhonghua Tian ◽  
Wenjiao Xiao ◽  
Brian F. Windley ◽  
Peng Huang ◽  
Ji’en Zhang ◽  
...  

The orogenic architecture of the Altaids of Central Asia was created by multiple large-scale slab roll-back and oroclinal bending. However, no regional structural deformation related to roll-back processes has been described. In this paper, we report a structural study of the Beishan orogenic collage in the southernmost Altaids, which is located in the southern wing of the Tuva-Mongol Orocline. Our new field mapping and structural analysis integrated with an electron backscatter diffraction study, paleontology, U-Pb dating, 39Ar-40Ar dating, together with published isotopic ages enables us to construct a detailed deformation-time sequence: During D1 times many thrusts were propagated northwards. In D2 there was ductile sinistral shearing at 336−326 Ma. In D3 times there was top-to-W/WNW ductile thrusting at 303−289 Ma. Two phases of folding were defined as D4 and D5. Three stages of extensional events (E1−E3) separately occurred during D1−D5. Two switches of the regional stress field were identified in the Carboniferous to Early Permian (D1-E1-D2-D3-E2) and Late Permian to Early Triassic (D4-E3-D5). These two switches in the stress field were associated with formation of bimodal volcanic rocks, and an extensional interarc basin with deposition of Permian-Triassic sediments, which can be related to two stages of roll-back of the subduction zone on the Paleo-Asian oceanic margin. We demonstrate for the first time that two key stress field switches were responses to the formation of the Tuva-Mongol Orocline.


2001 ◽  
Vol 80 (3-4) ◽  
pp. 297-304 ◽  
Author(s):  
S. Vandycke ◽  
Y. Quinif

AbstractThis paper presents observations of recent faulting activity in the karstic network of the Rochefort Cave (Namur Province, Belgium, Europe). The principal recent tectonic features are bedding planes reactivated as normal faults, neo-formatted normal faults in calcite flowstone, fresh scaling, extensional features, fallen blocks and displacement of karstic tube. The seismo-tectonic aspect is expanded by the presence of fallen blocks where normally the cavity must be very stable and in equilibrium. Three main N 070° fault planes and a minor one affect, at a decimetre scale, the karst features and morphology. The faults are still active because recent fresh scaling and fallen blocks are observable. The breaking of Holocene soda straw stalactites and displacements of artificial features observed since the beginning of the tourist activity, in the last century, also suggest very recent reactivation of these faults. This recent faulting can be correlated to present-day tectonic activity, already evidenced by earthquakes in the neighbouring area. Therefore, karstic caves are favourable sites for the observation and the quantification of recent tectonic activity because they constitute a 3-D framework, protected from erosion. Fault planes with this recent faulting present slickensides. Thus a quantitative analysis in term of stress inversion, with the help of striated faults, has permitted to reconstruct the stress tensor responsible for the brittle deformation. The principal NW-SE extension (σ3 horizontal) is nearly perpendicular to that of the present regional stress as illustrated by the analysis of the last strong regional earthquake (Roermond, The Netherlands) in 1992. During the Meso-Cenozoic, the main stress tectonics recorded in this part of the European platform is similar to the present one with a NE-SW direction of extension.The discrepancy between the regional stress field and the local stress in the Rochefort cave can be the result of the inversion of the σ2 and σ3 axes of the stress ellipsoid due to its symmetry or of a local modification at the ground surface of the crustal stress field as it has been already observed in active zones.


Geology ◽  
2019 ◽  
Vol 48 (2) ◽  
pp. 123-127 ◽  
Author(s):  
Nevio Zitellini ◽  
César R. Ranero ◽  
M. Filomena Loreto ◽  
Marco Ligi ◽  
Marco Pastore ◽  
...  

Abstract The Tyrrhenian Basin is a region created by Neogene extensional tectonics related to slab rollback of the east-southeast–migrating Apennine subduction system, commonly believed to be actively underthrusting the Calabrian arc. A compilation of >12,000 km of multichannel seismic profiles, much of them recently collected or reprocessed, provided closer scrutiny and the mapping of previously undetected large compressive structures along the Tyrrhenian margin. This new finding suggests that Tyrrhenian Basin extension recently ceased. The ongoing compressional reorganization of the basin indicates a change of the regional stress field in the area, confirming that slab rollback is no longer a driving mechanism for regional kinematics, now dominated by the Africa-Eurasia lithospheric collision


Sign in / Sign up

Export Citation Format

Share Document