scholarly journals Recent active faults in Belgian Ardenne revealed in Rochefort Karstic network (Namur Province, Belgium)

2001 ◽  
Vol 80 (3-4) ◽  
pp. 297-304 ◽  
Author(s):  
S. Vandycke ◽  
Y. Quinif

AbstractThis paper presents observations of recent faulting activity in the karstic network of the Rochefort Cave (Namur Province, Belgium, Europe). The principal recent tectonic features are bedding planes reactivated as normal faults, neo-formatted normal faults in calcite flowstone, fresh scaling, extensional features, fallen blocks and displacement of karstic tube. The seismo-tectonic aspect is expanded by the presence of fallen blocks where normally the cavity must be very stable and in equilibrium. Three main N 070° fault planes and a minor one affect, at a decimetre scale, the karst features and morphology. The faults are still active because recent fresh scaling and fallen blocks are observable. The breaking of Holocene soda straw stalactites and displacements of artificial features observed since the beginning of the tourist activity, in the last century, also suggest very recent reactivation of these faults. This recent faulting can be correlated to present-day tectonic activity, already evidenced by earthquakes in the neighbouring area. Therefore, karstic caves are favourable sites for the observation and the quantification of recent tectonic activity because they constitute a 3-D framework, protected from erosion. Fault planes with this recent faulting present slickensides. Thus a quantitative analysis in term of stress inversion, with the help of striated faults, has permitted to reconstruct the stress tensor responsible for the brittle deformation. The principal NW-SE extension (σ3 horizontal) is nearly perpendicular to that of the present regional stress as illustrated by the analysis of the last strong regional earthquake (Roermond, The Netherlands) in 1992. During the Meso-Cenozoic, the main stress tectonics recorded in this part of the European platform is similar to the present one with a NE-SW direction of extension.The discrepancy between the regional stress field and the local stress in the Rochefort cave can be the result of the inversion of the σ2 and σ3 axes of the stress ellipsoid due to its symmetry or of a local modification at the ground surface of the crustal stress field as it has been already observed in active zones.

2021 ◽  
Vol 1 ◽  
pp. 77-78
Author(s):  
Luisa Röckel ◽  
Steffen Ahlers ◽  
Sophia Morawietz ◽  
Birgit Müller ◽  
Karsten Reiter ◽  
...  

Abstract. Natural seismicity and tectonic activity are important processes for the site-selection and for the long-term safety assessment of a nuclear waste repository, as they can influence the integrity of underground structures significantly. Therefore, it is crucial to gain insight into the reactivation potential of faults. The two key factors that control the reactivation potential are (a) the geometry and properties of the fault such as strike direction and friction angle, and (b) the orientations and magnitudes of the recent stress field and future changes to it due to exogenous processes such as glacial loading as well as anthropogenic activities in the subsurface. One measure of the reactivation potential of faults is the ratio of resolved shear stress to normal stresses at the fault surface, which is called slip tendency. However, the available information on fault properties and the stress field in Germany is sparse. Geomechanical numerical modelling can provide a prediction of the required 3D stress tensor in places without stress data. Here, we present slip tendency calculations on major faults based on a 3D geomechanical numerical model of Germany and adjacent regions of the SpannEnD project (Ahlers et al., 2021). Criteria for the selection of faults relevant to the scope of the SpannEnD project were identified and 55 faults within the model area were selected. For the selected faults, simplified geometries were created. For a subset of the selected faults, vertical profiles and seismic sections could be used to generate semi-realistic 3D fault geometries. Slip tendency calculations using the stress tensor from the SpannEnD model were performed for both 3D fault sets. The slip tendencies were calculated without factoring in pore pressure and cohesion, and were normalized to a coefficient of friction of 0.6. The resulting values range mainly between 0 and 1, with 6 % of values larger than 0.4. In general, the observed slip tendency is slightly higher for faults striking in the NW and NNE directions than for faults of other strikes. Normal faults show higher slip tendencies than reverse and strike slip faults for the majority of faults. Seismic events are generally in good agreement with the regions of elevated slip tendencies; however, not all seismicity can be explained through the slip tendency analysis.


2014 ◽  
Vol 151 (6) ◽  
pp. 1115-1134 ◽  
Author(s):  
JOSÉ LUIS SIMÓN ◽  
MARÍA ASUNCIÓN SORIANO ◽  
ANTONIO PÉREZ ◽  
ARÁNZAZU LUZÓN ◽  
ANDRÉS POCOVÍ ◽  
...  

AbstractDuring Early, as proposed by the International commission on stratigraphy Pleistocene times, interacting fluvial and aeolian processes constructed wide alluvial plains over an evaporite-dominated Miocene substratum in the central Ebro Basin. An exceptional site where these deposits show faults, folds, diapirs, karst structures and unconformities has been studied in detail. Analysis of particular structures demonstrates the interaction by that time of tectonic faulting, diapirism, karstification and sedimentation in an area where deformation was traditionally linked to the presence of underlying evaporites, without proposing any precise mechanism. Multiple approaches (sedimentology, structural geology and geophysics) have been used in order to discriminate the origin of each type of structure as well as to understand the interaction between different processes. Numerous normal faults and fractures of variable size are consistent with the regional stress field. Pleistocene deposits are pierced by diapirs of Miocene evaporites and disrupted by karst structures with different geometries (tubular, funnel and vault), both partially controlled by tectonics. The example described is proposed as an analogue model that could successfully illustrate evolution patterns of basins of potential interest for petroleum geology where similar processes have actuated, resulting in complex stratigraphical architectures.


2017 ◽  
Vol 50 (1) ◽  
pp. 164 ◽  
Author(s):  
S. Valkaniotis ◽  
S. Pavlides

New results for the recent tectonic activity in the northern part of the Gulf of Corinth rift are presented. Geological mapping and morphotectonic study re populate the area of study with numerous active and possible active faults. The area is dominated by individual and segmented normal faults along with major structures like Marathias and Delphi-Arachova faults. The results are in accordance with recent studies that reveal a more complex and wider structure of Corinth Rift to the north.


2021 ◽  
Vol 10 (3) ◽  
pp. 118
Author(s):  
Kanella Valkanou ◽  
Efthimios Karymbalis ◽  
Dimitris Papanastassiou ◽  
Mauro Soldati ◽  
Christos Chalkias ◽  
...  

This study deals with the assessment and mapping of neotectonic landscape deformation in the northern part of the Evia Island (Central Greece). Multi-Criteria Decision Analysis (MCDA) utilizing Analytic Hierarchy Process (AHP) and Weighted Linear Combination (WLC) procedures were conducted for the calculation of the Neotectonic Landscape Deformation Index (NLDI). The study is based on the combination of morphotectonic, geomorphological and geological parameters. The GIS-based spatial MCDA led to the classification of the study area into five classes of neotectonic deformation (from very low to very high) and to a neotectonic deformation map. The results were compared with the outputs of a relative tectonic activity classification approach based on quantitative geomorphic analysis at a regional scale, including site-specific field observations. Areas of high and very high deformation are related to the major active faults of Dirfis, Kandili and Gregolimano–Telethrio. Other minor active normal faults of medium to high seismic risk level, affecting the northern and northeastern parts of the island, are also associated with areas of intense landscape neotectonic deformation.


2007 ◽  
Vol 144 (4) ◽  
pp. 687-699 ◽  
Author(s):  
N. BOZKURT ÇİFTÇİ ◽  
ERDİN BOZKURT

Relay ramps form at different scales in extensional terrains to accommodate the differential stretching among the overlapping bounding-normal fault segments. The major boundary structure of the Gediz Graben (SW Turkey) is segmented, with formation, evolution and active breaching of relay ramps. The Akçapınar relay ramp is an example of these processes that forms within a 2 km wide overlap zone between ∼ E–W-trending segments on the southern margin of the Gediz Graben. Change of structural style at the ramp area is clearly evident from variations in the orientation of fractures and faults of the relay ramp. As a site of local stress field anomaly, ∼ N–S-trending structures in the Akçapınar relay ramp are conformable with the extension that is parallel to the bounding faults of the relay ramp. These structures are also superimposed onto the ∼ E–W-trending regional structural style by an obvious cross-cutting relationship, suggesting both spatial and temporal variation of the state of stress at the ramp area during the relay ramp formation. The regional stress field and the resulting regional structural style characterize the earlier stages of ramp evolution, during which segment interaction is limited. As segment interaction and relay ramp formation advances towards the breaching phase, an anomalous local stress field arises and the relay ramp area experiences extension parallel to the bounding normal faults, that is, transverse to the regional direction of extension. This creates a new structural style at the ramp area.


Solid Earth ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 801-816
Author(s):  
Alessandro Tibaldi ◽  
Noemi Corti ◽  
Emanuela De Beni ◽  
Fabio Luca Bonali ◽  
Susanna Falsaperla ◽  
...  

Abstract. We collected drone data to quantify the kinematics at extensional fractures and normal faults, integrated this information with seismological data to reconstruct the stress field, and critically compared the results with previous fieldwork to assess the best practice. As a key site, we analyzed a sector of the northeast rift of Mt Etna, an area affected by continuous ground deformation linked to gravity sliding of the volcano's eastern flank and dike injections. The studied sector is characterized also by the existence of eruptive craters and fissures and lava flows. This work shows that this rift segment is affected by a series of NNE- to NE-striking, parallel extensional fractures characterized by an opening mode along an average N105.7∘ vector. The stress field is characterized by a σHmin trending northwest–southeast. Normal faults strike parallel to the extensional fractures. The extensional strain obtained by cumulating the net offset at extensional fractures with the fault heave gives a stretching ratio of 1.003 in the northeastern part of the study area and 1.005 in the southwestern part. Given a maximum age of 1614 CE for the offset lavas, we obtained an extension rate of 1.9 cm yr−1 for the last 406 years. This value is consistent with the slip along the Pernicana Fault system, confirming that the NE rift structures accommodate the sliding of the eastern flank of the volcano.


2021 ◽  
Author(s):  
Alessandro Tibaldi ◽  
Noemi Corti ◽  
Emanuela De Beni ◽  
Fabio Luca Bonali ◽  
Susanna Falsaperla ◽  
...  

Abstract. We collected drone data to quantify the kinematics at extensional fractures and normal faults, integrated this information with seismological data to reconstruct the stress field, and critically compared the results with previous fieldwork to assess the best practice. As key site, we analysed a sector of the North-East Rift of Mt Etna, an area affected by continuous ground deformation linked to gravity sliding of the volcano's eastern flank and dyke injection. The studied sector is characterized also by the existence of eruptive craters and fissures and lava flows. This work shows that this rift segment is affected by a series of NE-striking, parallel extensional fractures characterized by an opening mode along an average N105.7° vector. Normal faults strike parallel to the extensional fractures, although they tend to bend slightly when crossing topographic highs corresponding to pyroclastic cones. The extensional strain obtained by cumulating the net offset at extensional fractures with the fault heave gives a stretching ratio of 1.003 in the northeastern part of the study area and 1.005 in the southwestern part. Given a maximum age of 1614 yr AD for the offset lavas, we obtained an extension rate of 1.9 cm/yr for the last 406 yr. The stress field is characterised by a σHmin trending NW-SE. Results indicate that Structure-from-Motion photogrammetry applied to drone surveys allows to collect large amounts of data with a resolution of 2–3 cm, a detail comparable to field surveys. In the same amount of time, drone survey can allow to collect more data than classical fieldwork, especially in logistically difficult rough terrains.


2020 ◽  
Author(s):  
nasim kharazizadeh

<p>The Influence of lithosphere and basement properties on the stretching factor and the development of extensional faults across the Otway Basin and eastern Bight Basin</p><ol><li><strong> KHARAZIZADEH*, W.P. SCHELLART, J.C. DUARTE </strong></li> </ol><p>School of Earth, Atmosphere and Environment, Monash University, Clayton, VIC 3800, Australia</p><p>Department of Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands</p><p>Instituto Dom Luiz (ILD) and Geology Department, Faculty of Sciences of the University of Lisbon, Campo Grande, Lisbon, Portugal  </p><p> </p><p>*[email protected]</p><p>*[email protected]</p><p> </p><p><strong>Abstract</strong></p><p>The large southern continental margin of Australia, with a wide variety of sedimentary basins, formed during Mesozoic rifting. The evolution of sedimentary basins is mainly controlled by plate tectonic activity and the mechanism of continental extension. This work presents a comparative study between two main depocentres of the Bight Basin (Ceduna, Duntroon sub-basins) and the Otway Basin. Here, the total amount of extension (∆L) and stretching factor (β) have been measured across the Otway Basin and eastern Bight Basin. The results show significant variation in extensional stretching along the basins, with the smallest stretching factors in the Ceduna and Duntroon sub-basins (1.2<β<1.4), and the largest amount of extension (~ 177 km) and the largest stretching factor (β=1.85) in the eastern part of the passive margin. The regions with the lowest β factor are underlain mostly by thicker lithosphere, while the regions with the largest β factor and amount of extension are related to younger and thinner lithosphere. The main basement structures have been mapped throughout South Australia and Victoria to examine the possible relationships between the new pattern of extensional faults and old basement fabrics. The distribution pattern of normal faults varies considerably along onshore and offshore components of basins. It is proposed that in some regions fault strike varies due to changes in orientation of pre-existing structures in the basement. For example, the north-south Coorong Shear Zone seems to affect the geometry of normal faults by changing their strike from E-W to NW-SE and also, in the easternmost part of the basin, the Bambra Fault changes the strike of normal faults to the NE-SW. Also, the NE-SW basement structures in the western part of the Gawler Craton have some control on normal faults in the western Ceduna sub-basin. Normal faults in the easternmost and westernmost parts of the Otway Basin have a similar orientation to the basement faults. However, in most regions basement faults are perpendicular to the normal faults and there is a minor influence on the new pattern of faulting. Our results imply that the properties of the continental lithosphere (age, thickness and strength of lithosphere) exert a major influence on the β factor and amount of crustal extension but only a minor influence on the geometry of extensional faults.</p><p><strong>Keywords:</strong> Otway Basin, Ceduna and Duntroon sub-basins, rifting, total amount of extension, β factor, normal faults, lithosphere properties</p><p> </p>


2020 ◽  
Author(s):  
Christopher Jackson ◽  
Luca Collanega ◽  
Thomas Phillips ◽  
Antje Lenhart ◽  
Edoseghe Osagiede ◽  
...  

<p>Rifts often evolve on a template of crystalline basement that may contain strong lithological and mechanical heterogeneities related to complex pre-rift tectonic histories. Numerous studies argue that reactivation of such pre-existing structures can influence the geometry and evolution of normal faults and rift physiography. However, in many cases: (i) it is unclear where, if at all, structures at the rift margin continue along-strike below the rift axis; and (ii) the precise geometric and kinematic relationship between pre-existing structures and newly formed normal faults is not well understood. These uncertainties reflect the fact that: (i) potential field data are typically of low-resolution, and thus cannot resolve the detailed morphology of shallow fault networks; (ii) field data cannot provide an accurate 3D image of intra-basement structures and the overlying rift; and (iii) seismic reflection data typically do not image deeply buried intra-basement structures. Understanding the kinematic as well as geometric relationship between intra-basement structures and rift-related fault networks is important for understanding plate motions and for undertaking stress inversions, given that paleo-extension directions (and sigma 3) are, in many rifted provinces, typically thought to lie normal to the dominant fault strike. </p><p> </p><p>We here tackle these problems using subsurface data from the Taranaki Basin, offshore New Zealand, and the northern North Sea, offshore west Norway. Our data provide excellent imaging of shallowly buried intra-basement structures, as well as cover-hosted normal faults and their associated pre- and syn-growth strata. We identify a range of intra-basement structures, both extensional and contractional,, and a range of geometric and kinematic interactions between intra-basement structures and cover normal faults. For example, some of the normal faults are physically connected to intra-basement structures oriented oblique to the regional extension direction. It is notable that, even in cases, intra-basement structures were apparently not extensionally reactivated during the later rift phase. Displacement maxima on cover faults occur at 100-200 m above the crystalline basement-cover interface, suggesting the former did not form due to simple extensional reactivation and upward propagation of pre-existing structures; rather, ‘passive’ basement structures somehow perturbed the regional stress field, leading to the development of normal faults whose strikes mimic those of the underlying pre-existing basement structures. Cover normal faults can also display a range of complex geometries related to the linkage of numerous, originally separate slip surfaces, and upward-bifurcation of strongly segmented fault systems. We also show that the timing of physical linkage between basement and cover structures can be recorded in the geometry of related growth strata, which document the switch from non-rotational to rotational faulting.</p><p> </p><p>Our analyses show that km-scale, intra-basement structures can control the nucleation and development of newly formed, rift-related normal faults, most likely due to a local perturbation of the regional stress field. Because of this, simply inverting fault strike for causal extension direction may be incorrect, especially in provinces where pre-existing, intra-basement structures occur. We also show that a detailed kinematic analysis is key to deciphering the temporal as well as the geometric relationships between structures developed at multiple structural levels.</p>


Sign in / Sign up

Export Citation Format

Share Document