Maximum latewood density records of the oldest trees in the world: Great Basin Bristlecone pine (Pinus Longaeva)

Author(s):  
Tom De Mil ◽  
Matthew Salzer ◽  
Charlotte Pearson ◽  
Valerie Trouet ◽  
Jan Van den Bulcke

<p>Great Basin Bristlecone pine (Pinus longaeva) is known for its trees that attain old age. The longest chronology is more than 9000 years long, and the temperature-sensitive upper treeline chronology extends back to 5000 years. The ring width pattern of upper treeline bristlecone pine trees are strongly influenced by temperature variability at decadal to centennial scales. To infer a climate signal on annual scales, MXD is shown to be a better temperature proxy. Here, we present a preliminary Maximum Latewood Density (MXD) chronology of bristlecone pine to investigate the temperature signal in upper treeline and below. Maximum latewood density (MXD) from 24 dated cores (from various sites ranging from the upper treeline and below, oldest sample dates back to 776 AD) was determined with an X-ray CT toolchain. Ring and fibre angles were corrected and a MXD chronology was constructed. The resulting MXD chronology will be correlated to summer temperature. Future scanning will allow constructing a + 5000 year MXD chronology and could reveal the cooling effect of volcanic eruptions through this period.</p>

2021 ◽  
Author(s):  
Tom De Mil ◽  
Matthew Salzer ◽  
Charlotte Pearson ◽  
Valerie Trouet ◽  
Jan Van den Bulcke

<p>Great Basin Bristlecone pine (Pinus longaeva) is known for its longevity. The longest continuous tree-ring width chronology covers more than 9000 years. Tree-ring width of upper treeline bristlecone pine trees is influenced by summer temperature variability at decadal to centennial scales, but to infer a temperature signal on interannual scales, Maximum Latewood Density (MXD) is a better proxy. Here, we present a preliminary MXD chronology to investigate the temperature signal in upper treeline and lower elevation bristlecone pines. MXD was measured with an X-ray Computed Tomography toolchain in 24 dated cores,  with the oldest sample dating back to 776 CE. Ring and fibre angles were corrected and two MXD chronologies for different elevations were developed, which will be used to study climate-growth relationships and the effect of elevation on them. Future scanning will allow constructing a 5000+ year-long MXD chronology from upper treeline sites, which will provide an annual-resolution North American temperature record covering the mid-to-late Holocene.</p>


2007 ◽  
Vol 67 (1) ◽  
pp. 57-68 ◽  
Author(s):  
Matthew W. Salzer ◽  
Malcolm K. Hughes

AbstractMany years of low growth identified in a western USA regional chronology of upper forest border bristlecone pine (Pinus longaeva and Pinus aristata) over the last 5000 yr coincide with known large explosive volcanic eruptions and/or ice core signals of past eruptions. Over the last millennium the agreement between the tree-ring data and volcano/ice-core data is high: years of ring-width minima can be matched with known volcanic eruptions or ice-core volcanic signals in 86% of cases. In previous millennia, while there is substantial concurrence, the agreement decreases with increasing antiquity. Many of the bristlecone pine ring-width minima occurred at the same time as ring-width minima in high latitude trees from northwestern Siberia and/or northern Finland over the past 4000–5000 yr, suggesting climatically-effective events of at least hemispheric scale. In contrast with the ice-core records, the agreement between widely separated tree-ring records does not decrease with increasing antiquity. These data suggest specific intervals when the climate system was or was not particularly sensitive enough to volcanic forcing to affect the trees, and they augment the ice core record in a number of ways: by providing confirmation from an alternative proxy record for volcanic signals, by suggesting alternative dates for eruptions, and by adding to the list of years when volcanic events of global significance were likely, including the mid-2nd-millennium BC eruption of Thera.


2003 ◽  
Vol 60 (3) ◽  
pp. 252-262 ◽  
Author(s):  
Nicole K. Davi ◽  
Gordon C. Jacoby ◽  
Gregory C. Wiles

AbstractVariations in both width and density of annual rings from a network of tree chronologies were used to develop high-resolution proxies to extend the climate record in the Wrangell Mountain region of Alaska. We developed a warm-season (July–September) temperature reconstruction that spans A.D. 1593–1992 based on the first eigenvector from principal component analysis of six maximum latewood density (MXD) chronologies. The climate/tree-growth model accounts for 51% of the temperature variance from 1958 to 1992 and shows cold in the late 1600s–early 1700s followed by a warmer period, cooling in the late 1700s–early 1800s, and warming in the 20th century. The 20th century is the warmest of the past four centuries. Several severely cold warm-seasons coincide with major volcanic eruptions. The first eigenvector from a ring-width (RW) network, based on nine chronologies from the Wrangell Mountain region (A.D. 1550–1970), is correlated positively with both reconstructed and recorded Northern Hemisphere temperatures. RW shows a temporal history similar to that of MXD by increased growth (warmer) and decreased growth (cooler) intervals and trends. After around 1970 the RW series show a decrease in growth, while station data show continued warming, which may be related to increasing moisture stress or other factors. Both the temperature history based on MXD and the growth trends from the RW series are consistent with well-dated glacier fluctuations in the Wrangell Mountains and some of the temperature variations also correspond to variations in solar activity.


2016 ◽  
Vol 46 (3) ◽  
pp. 387-401 ◽  
Author(s):  
Miloš Rydval ◽  
Daniel Druckenbrod ◽  
Kevin J. Anchukaitis ◽  
Rob Wilson

Nonclimatic disturbance events are an integral element in the history of forests. Although the identification of the occurrence and duration of such events may help to understand environmental history and landscape change, from a dendroclimatic perspective, disturbance can obscure the climate signal in tree rings. However, existing detrending methods are unable to remove disturbance trends without affecting the retention of long-term climate trends. Here, we address this issue by using a novel method for the detection and removal of disturbance events in tree-ring width data to assess their spatiotemporal occurrence in a network of Scots pine (Pinus sylvestris L.) trees from Scotland. Disturbance trends “superimposed” on the tree-ring record are removed before detrending and the climate signals in the precorrection and postcorrection chronologies are evaluated using regional climate data, proxy system model simulations, and maximum latewood density (MXD) data. Analysis of subregional chronologies from the West Highlands and the Cairngorms in the east reveals a higher intensity and more systematic disturbance history in the western subregion, likely a result of extensive timber exploitation. The method improves the climate signal in the two subregional chronologies, particularly in the more disturbed western sites. Our application of this method demonstrates that it is possible to minimise the effects of disturbance in tree-ring width chronologies to enhance the climate signal.


Author(s):  
Olga V. Churakova (Sidorova) ◽  
Marina V. Fonti ◽  
Alexander V. Kirdyanov ◽  
Vladimir S. Myglan ◽  
Valentin V. Barinov ◽  
...  

Stratospheric volcanic eruptions have had significant impacts on the radiation budget, atmospheric and surface temperatures, precipitation and regional weather patterns, resulting in global climatic changes. The changes associated with such eruptions most commonly result in cooling during several years after events. This study aimed to reveal eco-physiological response of larch trees from northeastern Yakutia (YAK), eastern Taimyr (TAY) and Altai (ALT) regions to climatic anomalies after major volcanic eruptions CE 535, 540, 1257, 1641, 1815 and 1991 using new multiple tree-ring parameters: tree-ring width (TRW), maximum latewood density (MXD), cell wall thicknesses (CWT), δ13C and δ18O in tree-ring cellulose. This investigation showed that TRW, CWT, MXD and δ18O chronologies recorded temperature signal, while information about precipitation and vapor pressure deficit was captured by δ13C chronologies. Sunshine duration was well recorded in δ18O from YAK and ALT. Tree-ring parameters recorded cold, wet and cloudy summer anomalies during the 6th and 13th centuries. However, significant summer anomalies after Tambora (1815) and Pinatubo (1991) eruptions were not captured by any tree-ring parameters


1996 ◽  
Vol 26 (1) ◽  
pp. 143-148 ◽  
Author(s):  
Rosanne D. D'arrigo ◽  
Edward R. Cook ◽  
Gordon C. Jacoby

Temperature-sensitive maximum latewood density chronologies from sites near tree line in Labrador are used to infer past changes in warm-season surface air and sea surface temperatures for the northwest Atlantic. Temperatures are reconstructed for the Grand Banks region based on density records from southern Labrador, while a density series from near Okak Fiord, northern Labrador, is used to infer past temperature variations for north-coastal Labrador and the adjacent Labrador Sea. The Labrador chronologies show good agreement with annual and decadal-scale temperature fluctuations over the recent period of instrumental record, and extend this temperature information into the past by several centuries. The lowest density value at the Okak site occurs in 1816, known as the "year without a summer" in eastern North America. Spectral analyses reveal statistically significant variations with periods of around 8.7, 18–22, and 45–66 years. These fluctuations are in general agreement with those identified in several instrumental and modeling analyses of North Atlantic climate.


1994 ◽  
Vol 42 (1) ◽  
pp. 88-99 ◽  
Author(s):  
Malcolm K. Hughes ◽  
Wu Xiangding ◽  
Shao Xuemei ◽  
Gregg M. Garfin

AbstractMay-June (MJ) and April-July (AJ) precipitation at Huashan in north-central China has been reconstructed for the period A.D. 1600 to 1988 using tree-ring density and width fromPinus armandii. MJ precipitation (based on ring width and maximum latewood density) calibrated and cross-validated against local instrumental data more strongly than AJ precipitation (based only on ring width). A major drought was reconstructed for the mid- and late 1920s, confirmed by local documentary sources. This drought (culminating in 1929) was the most severe of the 389-yr period for MJ and second most severe for AJ, after an event ending in 1683. Neither reconstruction shows much spectral power at frequencies lower than 1 in 10 yr, but both show concentrations of power between 2.1 and 2.7 yr and 3.5 to 9 yr. There are significant correlations between the two reconstructions and a regional dryness/wetness index (DW) based on documentary sources, particularly at high frequencies. These correlations are focused in the 7.6- to 7.3-, 3.8- to 3.6-, and 2.5-yr periods. Using singular spectrum analysis, quasiperiodic behavior with a period close to 7.2 yr was identified in the MJ precipitation reconstruction and in the DW index based on documents.


1973 ◽  
Vol 3 (4) ◽  
pp. 632-660 ◽  
Author(s):  
Valmore C. LaMarche

AbstractRemains of dead bristlecone pine (Pinus longaeva Bailey) are found at altitudes up to 150 m above present treeline in the White Mountains. Standing snags and remnants in two study areas were mapped and sampled for dating by tree-ring and radiocarbon methods. The oldest remnants represent trees established more than 7400 y.a. Experimental and empirical evidence indicates that the position of the treeline is closely related to warm-season temperatures, but that precipitation may also be important in at least one of the areas. The upper treeline was at high levels in both areas until after about 2200 B.C., indicating warm-season temperatures about 3.5°F higher than those of the past few hundred years. However, the record is incomplete, relative warmth may have been maintained until at least 1500 B.C. Cooler and wetter conditions are indicated for the period 1500 B.C.-500 B.C., followed by a period of cool but drier climate. A major treeline decline occurred between about A.D. 1100 and A.D. 1500, probably reflecting onset of cold and dry conditions. High reproduction rates and establishment of scattered seedlings at high altitudes within the past 100 yr represents an incipient treeline advance, which reflected a general climatic warming beginning in the mid-19th century that has lasted until recent decades in the western United States. This evidence for climatic variation is broadly consistent with the record of Neoglacial advances in the North American Cordillera, and supports Antevs' concept of a warm “altithermal age” in the Great Basin.


The Holocene ◽  
2019 ◽  
Vol 29 (11) ◽  
pp. 1817-1830 ◽  
Author(s):  
R Wilson ◽  
K Anchukaitis ◽  
L Andreu-Hayles ◽  
E Cook ◽  
R D’Arrigo ◽  
...  

In north-western North America, the so-called divergence problem (DP) is expressed in tree ring width (RW) as an unstable temperature signal in recent decades. Maximum latewood density (MXD), from the same region, shows minimal evidence of DP. While MXD is a superior proxy for summer temperatures, there are very few long MXD records from North America. Latewood blue intensity (LWB) measures similar wood properties as MXD, expresses a similar climate response, is much cheaper to generate and thereby could provide the means to profoundly expand the extant network of temperature sensitive tree-ring (TR) chronologies in North America. In this study, LWB is measured from 17 white spruce sites ( Picea glauca) in south-western Yukon to test whether LWB is immune to the temporal calibration instabilities observed in RW. A number of detrending methodologies are examined. The strongest calibration results for both RW and LWB are consistently returned using age-dependent spline (ADS) detrending within the signal-free (SF) framework. RW data calibrate best with June–July maximum temperatures (Tmax), explaining up to 28% variance, but all models fail validation and residual analysis. In comparison, LWB calibrates strongly (explaining 43–51% of May–August Tmax) and validates well. The reconstruction extends to 1337 CE, but uncertainties increase substantially before the early 17th century because of low replication. RW-, MXD- and LWB-based summer temperature reconstructions from the Gulf of Alaska, the Wrangell Mountains and Northern Alaska display good agreement at multi-decadal and higher frequencies, but the Yukon LWB reconstruction appears potentially limited in its expression of centennial-scale variation. While LWB improves dendroclimatic calibration, future work must focus on suitably preserved sub-fossil material to increase replication prior to 1650 CE.


Sign in / Sign up

Export Citation Format

Share Document