From climate projections to climate change services in Australia – retrospective and future directions

Author(s):  
John Clarke ◽  
Karl Braganza ◽  
Geoff Gooley ◽  
Michael Grose ◽  
Louise Wilson

<p>Australia is the World’s driest inhabited continent. It is highly exposed to the impacts of climate change: surrounded by sensitive marine ecosystems including the Great Barrier Reef, vulnerable to tropical cyclones and changing monsoonal patterns in the north, experiencing declining rainfall and runoff in the heavily populated southern and eastern parts of the country, and subject to increasingly severe bushfires. The ever-present flood, drought and bushfire cycles have historically motivated government investment in programs that aim to understand the nation’s climate and its drivers, and to inform adaptation planning and disaster risk management.</p><p>Accordingly, the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Bureau of Meteorology (BoM) have been at the forefront of understanding Australia’s past and future climate for four decades.</p><p>The most recent national climate projections were published in 2015. These focussed on the needs of the natural resource management sector and represented a first step towards delivery of climate change services tailored to the sector’s needs. Products included decision support tools and provision of training for capacity building. A key component of the research program was stakeholder engagement from inception. The resultant Climate Change in Australia website (www.climatechangeinaustralia.gov.au) and Help Desk represented the most ambitious steps to date towards a comprehensive Australian climate change service, and were a first attempt at user-driven information delivery.</p><p>Now five years on, users' needs have evolved substantially. Key drivers of this include: (1) the Paris Agreement (2015) to limit global temperature rise to below 2.0°C (ideally below 1.5°C) above pre-industrial levels, (2) implications of the Taskforce for Climate-related Financial Disclosures (TCFD, 2017), and (3) IPCC Special Reports. This has occurred on top of a trend towards increasingly sophisticated uses of climate projections datasets for decision-making. Existing products do not meet all user needs. There is a pronounced ‘pull’ from users of climate projections for sector-specific "decision-relevant" information for risk-management decisions. The cross-jurisdictional impacts of climate change have also resulted in a need for authoritative, standardized and quality-assured climate scenarios for the entire country, to facilitate whole of sector, cross-agency and multi-sector responses and adaptation. As Lourenco et al (2016) said, climate change services for Australia need to shift from “science-driven and user informed services to user-driven and science informed services.”</p><p>There is increased emphasis on sector-specific tools that aim to provide decision-relevant information and underpinning datasets. An ongoing challenge is the need to enable the uptake of climate information in decision-making. This necessitates a skill uplift on the user side. To date, efforts have focused on the water, finance, energy, and indigenous land management sectors. Increasingly, the focus within Australia is on working together across jurisdictional boundaries to provide nationally consistent information; with enhanced transparency drawing upon climate science resources within universities and all levels of government. Strong partnerships with the private sector are also needed in order to deliver to burgeoning demand. Success will require genuine co-design, co-production and co-evaluation of sector-specific products with a suite of support services appropriate to the needs of diverse users.</p>

2021 ◽  
Author(s):  
◽  
Alyssa Ryan

<p>New Zealand wine is cultivated in cool climates that produce distinctive flavours and wine-styles, which are representative of the terroir of the region. The effects of climate change can impact the quality and quantity of winegrapes, and the production of premium wine. The aim of this research was to investigate adaptation planning in the New Zealand wine industry by evaluating winegrowers’ decision-making and perceptions of climate change. Research was conducted using primary survey data from New Zealand winegrowers and semi-structured interviews with winegrowers from three case study regions of Marlborough, Central Otago, and Hawke’s Bay. The study was designed to assess how climate change is understood throughout the industry, whether adaptation plans are being developed or employed and the barriers hindering winegrowers’ implementation of adaptation strategies. The results show that winegrowers are somewhat informed about climate change with some adaptation planning occurring. However, the majority of winegrowers have no plans to adapt to climate change. The uncertainty in the climate science and the availability of information were indicated as a barrier to adaptation planning. Winegrowers convey the need for regional information with a focus on reliable forecasting and climate projections for the next few years. The New Zealand wine industry is in a positive position to undertake adaptation with the opportunity to exploit the benefits of climate change for wine production.</p>


2012 ◽  
Vol 32 ◽  
pp. 99-107 ◽  
Author(s):  
J. Korck ◽  
J. Danneberg ◽  
W. Willems

Abstract. The Inn River basin is a highly relevant study region in terms of potential hydrological impacts of climate change and cross boundary water management tasks in the Alpine Space. Regional analyses in this catchment were performed within the EU co-funded project AdaptAlp. Objective of the study was to gain scientifically based knowledge about impacts of climate change on the water balance and runoff regime for the Inn River basin, this being fundamental for the derivation of adaptation measures. An ensemble of regional climate projections is formed by combinations of global and regional climate models on the basis of both statistical and bias-corrected dynamical downscaling procedures. Several available reference climate datasets for the study region are taken into account. As impact model, the process-oriented hydrological model WaSiM-ETH is set up. As expected, regional climate projections indicate temperature increases for the future in the study area. Projections of precipitation change are less homogenous, especially regarding winter months, though most indicate a decrease in the summer. Hydrological simulation results point towards climate induced changes in the water regime of the study region. The analysis of hydrological projections at both ends of the ensemble bandwidth is a source of adaptation relevant information regarding low-flow and high-flow conditions. According to a "drought-prone scenario", mean monthly low flow could decrease up to −40% in the time frame of 2071–2100. A "high-flow-increase-scenario" points towards an increase in mean monthly high flow in the order of +50% in the winter, whilst showing a decrease in autumn.


2021 ◽  
Author(s):  
◽  
Alyssa Ryan

<p>New Zealand wine is cultivated in cool climates that produce distinctive flavours and wine-styles, which are representative of the terroir of the region. The effects of climate change can impact the quality and quantity of winegrapes, and the production of premium wine. The aim of this research was to investigate adaptation planning in the New Zealand wine industry by evaluating winegrowers’ decision-making and perceptions of climate change. Research was conducted using primary survey data from New Zealand winegrowers and semi-structured interviews with winegrowers from three case study regions of Marlborough, Central Otago, and Hawke’s Bay. The study was designed to assess how climate change is understood throughout the industry, whether adaptation plans are being developed or employed and the barriers hindering winegrowers’ implementation of adaptation strategies. The results show that winegrowers are somewhat informed about climate change with some adaptation planning occurring. However, the majority of winegrowers have no plans to adapt to climate change. The uncertainty in the climate science and the availability of information were indicated as a barrier to adaptation planning. Winegrowers convey the need for regional information with a focus on reliable forecasting and climate projections for the next few years. The New Zealand wine industry is in a positive position to undertake adaptation with the opportunity to exploit the benefits of climate change for wine production.</p>


2021 ◽  
Author(s):  
Kepa Solaun ◽  
Gerard Alleng ◽  
Adrián Flores ◽  
Chiquita Resomardono ◽  
Katharina Hess ◽  
...  

Suriname is highly vulnerable to the effects of climate change. Among the factors that exacerbate its vulnerability are its dependency on fossil fuels, the degradation of important ecosystems (e.g., mangroves), and the fact that 87% of the population, and most of the countrys economic activity is located within the low-lying coastal area. Many sectors are at risk of suffering losses and damage caused by gradual changes and extreme events related to climate change. For Suriname to develop sustainably, it should incorporate climate change and its effects into its decision-making process based on scientific- evidence. The State of the Climate Report analyzes Surinames historical climate (1990-2014) and provides climate projections for three time horizons (2020-2044, 2045-2069, 2070-2094) through two emissions scenarios (intermediate/ SSP2-4.5 and severe/ SSP5-8.5). The analysis focuses on changes in sea level, temperature, precipitation, relative humidity, and winds for the seven subnational locations of Paramaribo, Albina, Bigi Pan MUMA, Brokopondo, Kwamalasamutu, Tafelberg Natural Reserve, and Upper Tapanahony. The Report also analyzes climate risk for the countrys ten districts by examining the factors which increase their exposure and vulnerability on the four most important sectors affected by climate change: infrastructure, agriculture, water, and forestry, as well as examining the effects across the sectors. The State of the Climate Report provides essential inputs for Suriname to develop and update its climate change policies and targets. These policies and targets should enable an adequate mainstreaming of climate change adaptation and resilience enhancementinto day-to-day government operations. It is expected that the Report will catalyze similar efforts in the future to improve decision-making by providing science-based evidence.


2017 ◽  
Vol 8 (4) ◽  
pp. 652-674 ◽  
Author(s):  
Mohsen Nasseri ◽  
Banafsheh Zahraie ◽  
Leila Forouhar

Abstract In this paper, two approaches to assess the impacts of climate change on streamflows have been used. In the first approach (direct), a statistical downscaling technique was utilized to predict future streamflows based on large-scale data of general circulation models (GCMs). In the second approach (indirect), GCM outputs were downscaled to produce local climate conditions which were then used as inputs to a hydrological simulation model. In this article, some data-mining methods such as model-tree, multivariate adaptive regression splines and group method of data handling were utilized for direct downscaling of streamflows. Projections of HadCM3 model for A2 and B2 SRES scenarios were also used to simulate future climate conditions. These evaluations were done over three sub-basins of Karkheh River basin in southwest Iran. To achieve a comprehensive assessment, a global uncertainty assessment method was used to evaluate the results of the models. The results indicated that despite simplifications included in the direct downscaling, this approach is accurate enough to be used for assessing climate change impacts on streamflows without computational efforts of hydrological modeling. Furthermore, comparing future climate projections, the uncertainty associated with elimination of hydrological modeling is estimated to be high.


2020 ◽  
Author(s):  
Jason A. Lowe ◽  
Carol McSweeney ◽  
Chris Hewitt

&lt;p&gt;There is clear evidence that, even with the most favourable emission pathways over coming decades, there will be a need for society to adapt to the impacts of climate variability and change. To do this regional, national and local actors need up-to-date information on the changing climate with clear accompanying detail on the robustness of the information. This needs to be communicated to both public and private sector organisations, ideally as part of a process of co-developing solutions.&lt;/p&gt;&lt;p&gt;EUCP is an H2020 programme that began in December 2017 with the aim of researching and testing the provision of improved climate predictions and projections for Europe for the next 40+ years, and drawing on the expertise of researchers from a number of major climate research institutes across Europe. It is also engaging with users of climate change information through a multiuser forum (MUF) to ensure that what we learn will match the needs of the people who need if for decision making and planning.&lt;/p&gt;&lt;p&gt;The first big issue that EUCP seeks to address is how better to use ensembles of climate model projections, moving beyond the one-model-one-vote philosophy. Here, the aim is to better understand how model ensembles might be constrained or sub-selected, and how multiple strands of information might be combined into improved climate change narratives or storylines. The second area where EUCP is making progress is in the use of very high-resolution regional climate simulations that are capable of resolving aspects of atmospheric convection. Present day and future simulations from a new generation of regional models ae being analysed in EUCP and will be used in a number of relevant case studies. The third issue that EUCP will consider is how to make future simulations more seamless across those time scales that are most relevant user decision making. This includes generating a better understanding of predictability over time and its sources in initialised forecasts, and also how to transition from the initialised forecasts to longer term boundary forced climate projections.&lt;/p&gt;&lt;p&gt;This presentation will provide an overview of the challenges being addressed by EUCP and the approaches the project is using.&lt;/p&gt;&lt;p&gt;&lt;br&gt;&lt;br&gt;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document