Spatial simulation of water supply service flow in Ningxia, China

Author(s):  
Jie Xu ◽  
Gaodi Xie ◽  
Yu Xiao ◽  
Jingya Liu ◽  
Keyu Qin ◽  
...  

<p>Transregional Ecosystem Service (ES) flows are ubiquitous and are receiving more attention in an increasingly metacoupled world. Water has typical flow properties and is a common flow medium of Water-related Ecosystem Services (WES), such as water supply, water conservation, etc. Ningxia is in a transition zone from semi-arid to arid areas of the Yellow River basin of China. Its role in the water transfer from the Qinghai-Tibet Plateau to the downstream city and agriculture is important in allocating the scarce water resources in (semi-)arid regions. This study described the water flow process to/from Ningxia and revealed the supply-demand balance of water in Ningxia and its adjacent basins. On the grid scale, the total dynamic residual water in Ningxia from 2000 to 2015 was 2.20×10<sup>12</sup> m<sup>3</sup>~6.26×10<sup>12</sup> m<sup>3</sup>. However, there was still a dynamic water demand gap of -72.25×10<sup>8</sup> m<sup>3</sup> ~ -59.08×10<sup>8</sup> m<sup>3</sup>, which could only be supplemented by manual water intake. At the regional scale, Ningxia had two sides, which was both the beneficiary of the upper Xiaheyan basin, Qingshui River - Kushui River basin, Xiaheyan - Shizuishan basin, Hexi Inland River-Shiyang River basin, Hexi Inland Rive-Hexi desert basin and internal flow area, and the supplier of the downstream Shizuishan - Hekou town, Longmen to Sanmenxia subbasin. As the benefitting district, the total net inflow water supply service in the supply area from 2000 to 2015 was 135.86×10<sup>8</sup> m<sup>3 </sup>~ 294.22×10<sup>8</sup> m<sup>3</sup>, among which the non-Ningxia region in the sub-basin above the Xiaheyan basin was the main source region of water supply service in Ningxia. As the supply area, the net outflow volume of water supply service in Ningxia from 2000 to 2015 was 72.83×10<sup>8</sup> m<sup>3</sup>~200.46×10<sup>8</sup> m<sup>3</sup>, mainly flowing to non-Ningxia regions from Shizuishan to Hekou town. Overall, the net volume of water supply service flowing into Ningxia from 2000 to 2015 ranged from 63.03×10<sup>8</sup> m<sup>3</sup> to 93.76×10<sup>8</sup> m<sup>3</sup>. This study can enhance the understanding of trans-boundary telecoupling relationship of WES in Ningxia and contribute to form a foundation for interregional management and allocation of WES in (semi-)arid regions to promote equity in sustainable regional development.</p>

2020 ◽  
Author(s):  
Abobakar Himat ◽  
Enrica Caporali

<p>Under climate change conditions, arid and semi-arid regions need facing challenges of sustainable water resources management. Climate change in these regions is the accelerator of extreme events (droughts and flash floods) and the increase of water scarcity issues. Afghanistan is a landlocked country which is located in the south of Asia. Kabul River Basin (KRB) is the most populous region in the country. The total catchment area of KRB is about 108000 km<sup>2</sup>. The elevation ranges between 260 and 7600 m a.s.l.. There are some major tributaries in the basin such as Kabul, Logar, Kunar, and Panjsher. The study area has a semi-arid climate. In the Central Kabul sub-basin (capital of the country) the groundwater is more prone to declination due to the rapid population increase of internal displacement people. The groundwater is significantly affected by anthropogenic alterations especially in the Central Kabul sub-basin areas of the river basin. Groundwater overexploitation, droughts, and rapid population increase are among common phenomena in the KRB which greatly affect the availability of water resources. The domestic water supply for the city of Kabul is entirely dependent on groundwater. The city with an average per capita water supply of 20 l/day is among the most water-stressed cities in the world. Artificial Recharge (AR) applications can be used to mitigate these phenomena. Due to the highest evapotranspiration rate, special attention indeed, has been paid to AR in water resource management in arid and semi-arid regions.  </p><p>In this study, a detailed literature review on the existent AR types suitable for arid and semi-arid region and Geographic Information System (GIS) techniques, are used to identify the most suitable AR areas in the KRB. The hydrological behaviour of AR is investigated and the design criteria are defined. Infiltration, evapotranspiration, retention capacity and other hydrological parameters connected with hydraulic risk, underground recharge, soil moisture, and run-off are particularly analysed. Some parameters including topography, geology, hydrography, climate variables, existing water infrastructures, and demography are used for the identification of potential AR areas in the KRB. The analysed parameters are classified, weighted, and thematic maps are developed in GIS environment.</p><p>The implementation of AR could bring great benefits to the basin especially as far as the groundwater resources enhancement for domestic water supply and irrigation is concerned. The groundwater of the KRB is about 70% and 60% vulnerable to droughts and floods respectively. The groundwater recharge rate of the basin is about 90 mm/year. The use of Karez, springs, and wells are responsible for the overexploitation of the groundwater in the KRB. Suitable AR types and suitability maps of the study area are developed. The developed map can be used as a tool for the future implementation of AR techniques in the KRB. KRB is a trans-boundary river basin in which a part of the river basin is located in Pakistan. In trans-boundary water resources management, some measures should be taken to prevent water-related dispute issues.</p>


2018 ◽  
Vol 54 (2) ◽  
pp. 104-114
Author(s):  
Xiuyan Jing ◽  
Hongbin Yang ◽  
Na Wang

Abstract The chemical evolution of groundwater has received close attention from hydro-geologists. Northwest China largely consists of arid and semi-arid regions, where surface water and groundwater frequently exchange with each other, and where the mixing and water–rock interactions significantly affect the direction of water quality evolution. Based on experimental simulation, this paper investigates the interactions among the Yellow River water, groundwater and rocks in Yinchuan. The study found that when groundwater is mixed with the Yellow River water, the Yellow River water has a certain dilution effect on the hydro-chemical composition of groundwater; however, this effect is not simply diluted by proportion for no reaction between irons, but a portion of calcium, sulfur, and carbonate form precipitates. After mixing of the Yellow River water, groundwater and rocks, the pH increased, and the carbon dioxide system reached equilibrium again. In addition, CO32− was produced. While Na+ increase was mainly due to dissolution, SO42− decrease was because of precipitation. The precipitation or dissolution of Ca2+, Mg2+, and CO32− mainly depended on the mixing ratio between groundwater and river water, which suggested the reversible behavior of the dissolution-precipitation of carbonate minerals.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jinliang Zhang ◽  
Yizi Shang ◽  
Jinyong Liu ◽  
Jian Fu ◽  
Shitao Wei ◽  
...  

Abstract The Jinghe River remains the major sediment source of the Yellow River in China; however, sediment discharge in the Jinghe River has reduced significantly since the 1950s. The objective of this study is to identify the causes of sediment yield variations in the Jinghe River Basin based on soil and water conservation methods and rainfall analyses. The results revealed that soil and water conservation projects were responsible for half of the total sediment reduction; sediment retention due to reservoirs and water diversion projects was responsible for 1.3% of the total reduction. Moreover, the Jinghe River Basin has negligible opportunity to improve its vegetation cover (currently 55% of the basin is covered with lawns and trees), and silt-arrester dams play a smaller role in reducing sediment significantly before they are entirely full. Therefore, new large-scale sediment trapping projects must be implemented across the Jinghe River Basin, where heavy rainfall events are likely to substantially increase in the future, leading to higher sediment discharge.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1293 ◽  
Author(s):  
Hao Wang ◽  
Hu Zhao

The Taohe River Basin is the largest tributary and an important water conservation area in the upper reaches of the Yellow River. In order to investigate the status of soil erosion in this region, we conducted a research of soil erosion. In our study, several parameters of the revised universal soil loss equation (RUSLE) model are extracted by using Google Earth Engine. The soil erosion modulus of the Taohe River Basin was calculated based on multi-source data, and the spatio-temporal variation characteristics of the soil erosion intensity were analyzed. The results showed the following: (1) the average soil erosion modulus of the Taohe River Basin in 2000, 2005, 2010, 2015 and 2018 were 1424, 1195, 1129, 1099 and 1124 t·ha−1·year−1, respectively, and the overall downward trend was obvious. (2) The ranges of soil erosion in the Taohe River Basin in 2000, 2005, 2010, 2015 and 2018 are basically the same—mainly with slight erosion—and the soil erosion in the middle and lower reaches was more serious. (3) When dealing with the vegetation cover factor and conservation practice factor in the RUSLE model, Google Earth Engine provided a new approach for soil erosion investigation and monitoring over a large area.


Author(s):  
Hang Li ◽  
Xiao-Ning Qu ◽  
Jie Tao ◽  
Chang-Hong Hu ◽  
Qi-Ting Zuo

Abstract China is actively exploring water resources management considering ecological priorities. The Shaying River Basin (Henan Section) serves as an important grain production base in China. However, conflicts for water between humans and the environment are becoming increasingly prominent. The present study analyzed the optimal allocation of water while considering ecological priorities in the Shaying River Basin (Henan Section). The ecological water demand was calculated by the Tennant and the representative station methods; then, based on the predicted water supply and demand in 2030, an optimal allocation model was established, giving priority to meeting ecological objectives while including social and comprehensive economic benefit objectives. After solving the model, the optimal results of three established schemes were obtained. This revealed that scheme 1 and scheme 2 failed to satisfy the water demand of the study area in 2030 by only the current conditions and strengthening water conservation, respectively. Scheme 3 was the best scheme, which could balance the water supply and demand by adding new water supply based on strengthening water conservation and maximizing the benefits. Therefore, the actual water allocation in 2030 is forecast to be 7.514 billion (7.514 × 109) m3. This study could help basin water management departments deal with water use and supply.


Sign in / Sign up

Export Citation Format

Share Document