scholarly journals Detrital Zircon U-Pb-Hf Isotopes of Middle Neoproterozoic Sedimentary Rocks in the Altyn Tagh Orogen, Southeastern Tarim: Insights for a Tarim-South China-North India Connection in the Periphery of Rodinia

Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 1-10
Author(s):  
Qian Liu ◽  
Guochun Zhao ◽  
Jianhua Li ◽  
Jinlong Yao ◽  
Yigui Han ◽  
...  

Abstract The location of the Tarim craton during the assembly and breakup of the Rodinia supercontinent remains enigmatic, with some models advocating a Tarim-Australia connection and others a location at the heart of the unified Rodinia supercontinent between Australia and Laurentia. In this study, our new zircon U-Pb dating results suggest that middle Neoproterozoic sedimentary rocks in the Altyn Tagh orogen of the southeastern Tarim craton were deposited between ca. 880 and 760 Ma in a rifting-related setting slightly prior to the breakup of Rodinia at ca. 750 Ma. A compilation of existing Neoproterozoic geological records also indicates that the Altyn Tagh orogen of the southeastern Tarim craton underwent collision at ca. 1.0-0.9 Ga and rifting at ca. 850-600 Ma related to the assembly and breakup of Rodinia. Furthermore, in order to establish the paleoposition of the Tarim craton with respect to Rodinia, available detrital zircon U-Pb ages and Hf isotopes from Meso- to Neoproterozoic sedimentary rocks were compiled. Comparable detrital zircon ages (at ca. 0.9, 1.3-1.1, and 1.7 Ga) and Hf isotopes indicate a close linkage among rocks of the southeastern Tarim craton, Cathaysia, and North India but exclude a northern or western Australian affinity. In addition, detrital zircons from the northern Tarim craton exhibit a prominent age peak at ca. 830 Ma with minor spectra at ca. 1.9 and 2.5 Ga but lack Mesoproterozoic ages, comparable to the northern and western Yangtze block. Together with comparable geological responses to the assembly and breakup of the Rodinia supercontinent, we offer a new perspective of the location of the Tarim craton between South China and North India in the periphery of Rodinia.

2020 ◽  
Author(s):  
Qian Liu

<p>Locating Tarim during assembly and breakup of Supercontinent Rodinia remains enigmatic, with different models advocating a Tarim-Australia linkage or a location between Australia and Laurentia at the heart of unified Rodinia. In this study, zircon U-Pb dating results first revealed middle Neoproterozoic sedimentary rocks in the Altyn Tagh orogen, southeastern Tarim. These sedimentary rocks were deposited between ca. 880 and 750 Ma in a rifting-related setting slightly prior to breakup of Rodinia at ca. 750 Ma. A compilation of Neoproterozoic geological records indicates that the Altyn Tagh orogen in southeastern Tarim underwent ca. 1.0-0.9 Ga collision and ca. 850-600 Ma rifting related to assembly and breakup of Rodinia, respectively. In order to place Tarim in Rodinia, available detrital zircon U-Pb ages and Hf isotopes from Meso- to Neoproterozoic sedimentary rocks in relevant Rodinia blocks are compiled. Comparable detrital zircon ages (at ca. 0.9, 1.3-1.1, and 1.7 Ga) and Hf isotopes indicate a close linkage among southeastern Tarim, Cathaysia, and North India, but rule out a North or West Australian affinity for Tarim. In addition, detrital zircons from northern Tarim exhibit a prominent age peak at ca. 830 Ma with minor spectra at ca. 1.9 and 2.5 Ga but lack Mesoproterozoic ages, which are comparable to those from northern and western Yangtze. Together with comparable geological responses to assembly and breakup of Rodinia, a new Tarim-South China-North India connection is inferred in the periphery of Rodinia.</p>


2021 ◽  
Author(s):  
Qian Liu ◽  
Toshiaki Tsunogae ◽  
Guochun Zhao ◽  
Yigui Han ◽  
Jinlong Yao ◽  
...  

<p>Amalgamation of northern Gondwana involves a wealth of present-day East Asian blocks (e.g., South China, North China, Alxa, Tarim, Indochina, Qiangtang, Sibumasu, Lhasa, etc.) due to consumption and closure of the Proto-Tethys Ocean. Locating the Tarim craton during assembly of northern Gondwana remains enigmatic, with different models separating Tarim from Gondwana by a paleoceanic domain throughout the Paleozoic, advocating a long-term Tarim-Australia linkage in the Neoproterozoic to the early Paleozoic, or suggesting a Tarim-Arabia connection in the early Paleozoic.</p><p>This study carried out field-based zircon U-Pb dating and Hf isotopic analyses for early Paleozoic sedimentary rocks in the Altyn Tagh orogen, southeastern Tarim. New dating results revealed that the early Paleozoic sedimentary rocks were deposited from ca. 494 to 449 Ma. Provenance tracing indicates the ca. 494-477 Ma sedimentary rocks were primarily sourced from the local Altyn Tagh orogen to the south of the North Altyn Ocean (one branch of the Proto-Tethys Ocean between southeastern Tarim and northern Gondwana). In contrast, the ca. 465-449 Ma sedimentary rocks have remarkably increasing ca. 840-780 Ma, 2.0-1.7 Ga, and 2.7-2.4 Ga detrital zircons, indicating an augmented supply of detritus from the Tarim craton to the north of the North Altyn Ocean. Such a significant provenance shift between ca. 477 and 465 Ma marks the timing of the final closure of the North Altyn Ocean. Combined with the timing of the final closure of other branches of the Proto-Tethys Ocean, the entire Proto-Tethys Ocean might have been progressively closed at ca. 500-420 Ma, resulting in the connection of most East Asian blocks with northern Gondwana. Based on detrital zircon U-Pb-Hf isotopic comparison, Tarim most likely shared a North Indian affinity with many East Asian blocks (such as North Qilian, North Qinling, South China, Indochina, South Qiangtang, etc.). This new finding argues against an Australian or Arabian affinity for the Tarim craton.</p><p>This work was financially supported by National Natural Science Foundation of China Projects (grants 41730213, 42072264, 41902229, 41972237, and 41888101), Hong Kong Research Grants Council General Research Fund (grant 17307918), and Grant-in-Aids for Scientific Research from Japan Society for the Promotion of Science (JSPS) to Prof. Toshiaki Tsunogae (No. 18H01300) and to Dr. Qian Liu (No. 19F19020). JSPS fellowship is also much appreciated.</p>


2021 ◽  
Vol 62 (3) ◽  
pp. 1-12
Author(s):  

To constrain the paleo - positions of the South China Cratons in the Rodinia Supercontinent during the Neoproterozoic, the in - situ U - Pb dating, and Hf isotope analysis of the detrital zircon from the Nam Co Complex, Song Ma Suture zone, northwestern Vietnam was performed. The U - Pb isotopic dating on detrital zircons shows that the Nam Co Complex demonstrates the major population (>50%) of around ~850 Ma while the minor population is scattered between ~1.2÷3.0 Ga. The Neoproterozoic age spectrum exhibits a large range of the εHf(t) from strongly negative to positive values ( - 17.418022÷ 14.600527), indicating that the source of the magma for this age range has been not only derived from reworking of the Archean basement rocks, but also generated from the juvenile material. The U - Pb age distribution patterns and Hf isotopic data of the detrital zircon in the Nam Co Complex are compatible with those of the South China Craton rather than those of the Indochina Craton. The data also indicate that sedimentary protoliths of the Nam Co Complex were deposited in a convergent - related basin along the southwestern margin of the South China Craton during the Neoproterozoic. Combined with the similarities of the detrital zircon age between western Cathaysia, Indochina, East Antarctica and East India, it is proved that the South China Craton was situated at the margin of the Rodinia Supercontinent and in close proximity to the Indochina, East Antarctica and East India.


Author(s):  
Bingshuang Zhao ◽  
Xiaoping Long ◽  
Jin Luo ◽  
Yunpeng Dong ◽  
Caiyun Lan ◽  
...  

The crustal evolution of the Yangtze block and its tectonic affinity to other continents of Rodinia and subsequent Gondwana have not been well constrained. Here, we present new U-Pb ages and Hf isotopes of detrital zircons from the late Neoproterozoic to early Paleozoic sedimentary rocks in the northwestern margin of the Yangtze block to provide critical constraints on their provenance and tectonic settings. The detrital zircons of two late Neoproterozoic samples have a small range of ages (0.87−0.67 Ga) with a dominant age peak at 0.73 Ga, which were likely derived from the Hannan-Micangshan arc in the northwestern margin of the Yangtze block. In addition, the cumulative distribution curves from the difference between the depositional age and the crystalline age (CA−DA) together with the mostly positive εHf(t) values of these zircon crystals (−6.8 to +10.7, ∼90% zircon grains with εHf[t] > 0) suggest these samples were deposited in a convergent setting during the late Neoproterozoic. In contrast, the Cambrian−Silurian sediments share a similar detrital zircon age spectrum that is dominated by Grenvillian ages (1.11−0.72 Ga), with minor late Paleoproterozoic (ca. 2.31−1.71 Ga), Mesoarchean to Neoarchean (3.16−2.69 Ga), and latest Archean to early Paleoproterozoic (2.57−2.38 Ga) populations, suggesting a significant change in the sedimentary provenance and tectonic setting from a convergent setting after the breakup of Rodinia to an extensional setting during the assembly of Gondwana. However, the presence of abundant Grenvillian and Neoarchean ages, along with their moderately to highly rounded shapes, indicates a possible sedimentary provenance from exotic continental terrane(s). Considering the potential source areas around the Yangtze block when it was a part of Rodinia or Gondwana, we suggest that the source of these early Paleozoic sediments had typical Gondwana affinities, such as the Himalaya, north India, and Tarim, which is also supported by their stratigraphic similarity, newly published paleomagnetic data, and tectono-thermal events in the northern fragments of Gondwana. This implies that after prolonged subduction in the Neoproterozoic, the northwestern margin of the Yangtze block began to be incorporated into the assembly of Gondwana and then accept sediments from the northern margin of Gondwanaland in a passive continental margin setting.


2016 ◽  
Vol 53 (3) ◽  
pp. 219-230 ◽  
Author(s):  
Xiao Ma ◽  
Kunguang Yang ◽  
Xuegang Li ◽  
Chuangu Dai ◽  
Hui Zhang ◽  
...  

The Jiangnan Orogeny generated regional angular unconformities between the Xiajiang Group and the underlying Sibao Group in the western Jiangnan Orogen along the southeastern margin of the Yangtze Block in southeast Guizhou, South China. Laser ablation – inductively coupled plasma – mass spectrometry (LA–ICP–MS) U–Pb zircon dating of two samples of the Motianling granitic pluton yielded U–Pb zircon ages of 826.2 ± 3.4 and 825.5 ± 6.1 Ma, with an average age of 825.6 ± 3.0 Ma, which is considered the minimum depositional age of the Sibao Group. The U–Pb ages of the youngest detrital zircon grains from the Sibao Group and the Xiajiang Group yielded average ages of 834.9 ± 3.8 and 794.6 ± 4.2 Ma, respectively. The depositional age of the Sibao Group can be constrained at 825–835 Ma, and deposition of the Xiajiang Group did not begin before ca. 800 Ma. These results suggest that the Jiangnan Orogeny, which led to the assembly of the Yangtze and Cathaysia blocks, ended at 795–835 Ma on the western segment of the Jiangnan Orogen. The detrital zircon distribution spectrums of the Sibao and Xiajiang groups suggest a provenance from Neoproterozoic basement sedimentary sequences along with a mixture of local Neoproterozoic subduction-related felsic granitoids, distant plutons from the western Yangtze Block and eastern Jiangnan Orogen, and recycled materials from the interior of the Yangtze Block. By comparing the basin evolution histories and magmatic and metamorphic events along the continental margins of the Rodinia supercontinent, it is proposed that the South China Block might have been located at the periphery, adjacent to North India and East Antarctica, rather than in the interior of Rodinia in Neoproterozoic time.


Geology ◽  
2021 ◽  
Author(s):  
Peng Wang ◽  
Guochun Zhao ◽  
Peter A. Cawood ◽  
Yigui Han ◽  
Shan Yu ◽  
...  

Constraining the positions of, and interrelationships between, Earth’s major continental blocks has played a major role in validating the concept of the supercontinent cycle. Minor continental fragments can provide additional key constraints on modes of supercontinent assembly and dispersal. The Tarim craton has been placed both at the core of Rodinia or on its periphery, and differentiating between the two scenarios has widespread implications for the breakup of Rodinia and subsequent assembly of Gondwana. In the South Tarim terrane, detrital zircon grains from Neoproterozoic–Silurian strata display two dominant populations at 950–750 and 550–450 Ma. Similarly, two main peaks at 1000–800 and 600–490 Ma characterize Neoproterozoic–Ordovician strata in northern India. Moreover, the two dominant peaks of South Tarim and north India lag two global peaks at 1200–1000 and 650–500 Ma, which reflect Rodinia and Gondwana assembly, arguing against a position within the heart of the two supercontinents. Ages and Hf isotopes of Tarim’s detrital zircons argue for a position on the margin of both supercontinents adjacent to north India with periodic dispersal through opening and closing of small ocean basins (e.g., the Proto-Tethys). Alternating tectonic transitions between advancing and retreating subduction in North Tarim coincide with periodic drift of South Tarim from north India in Rodinia and Gondwana, emphasizing the importance of retreating subduction in supercontinent dispersal. Moreover, the Rodinia-related orogenic belts spatially overlap the Gondwana-related orogenic belts in the two blocks, indicating no significant relative rotation of India and Tarim during the evolution from Rodinia to Gondwana.


2020 ◽  
Vol 123 (3) ◽  
pp. 331-342
Author(s):  
T. Andersen ◽  
M.A. Elburg ◽  
J. Lehmann

Abstract Detrital zircon grains from three samples of sandstone from the Tswaane Formation of the Okwa Group of Botswana have been dated by U-Pb and analysed for Hf isotopes by multicollector LA-ICPMS. The detrital zircon age distribution pattern of the detrital zircons is dominated by a mid-Palaeoproterozoic age fraction (2 000 to 2 150 Ma) with minor late Archaean – early Palaeoproterozoic fractions. The 2 000 to 2 150 Ma zircon grains show a range of epsilon Hf from -12 to 0. The observed age and Hf isotope distributions overlap closely with those of sandstones of the Palaeoproterozoic Waterberg Group and Keis Supergroup of South Africa, but are very different from Neoproterozoic deposits in the region, and from the Takatswaane siltstone of the Okwa Group, all of which are dominated by detrital zircon grains younger than 1 950 Ma. The detrital zircon data indicate that the sources of Tswaane Formation sandstones were either Palaeoproterozoic rocks in the basement of the Kaapvaal Craton, or recycled Palaeoproterozoic sedimentary rocks similar to the Waterberg, Elim or Olifantshoek groups of South Africa. This implies a significant shift in provenance regime between the deposition of the Takatswaane and Tswaane formations. However, the detrital zircon data are also compatible with a completely different scenario in which the Tswaane Formation consists of Palaeoproterozoic sedimentary rock in tectonic rather than depositional contact with the other units of the Okwa Group.


Sign in / Sign up

Export Citation Format

Share Document