Factor of safety analysis with and without vegetation using the SOSlope model

Author(s):  
Massimiliano Schwarz ◽  
Ilenia Murgia ◽  
Filippo Giadrossich ◽  
Massimiliano Bordoni ◽  
Claudia Meisina ◽  
...  

<p>Until now, slope stability models include the effects of the vegetation by adding a fixed value of apparent root cohesion as an estimate of root strength. However, some studies have demonstrated that root reinforcement depends on poorly constrained factors such as the heterogeneous distribution of roots in the soil and their tensional and compressional strength behavior.</p><p>SOSlope (Self-Organized Slope) is a hydro-mechanical model that computes the factor of safety on a hillslope discretized into a two-dimensional array of blocks connected by bonds to simulate the interactions of root-soil systems (Cohen and Schwarz, 2017). SOSlope estimates slope stability considering the presence of vegetation as a function of parameters such as species, tree density and diameter at breast height. In particular, bonds between adjacent blocks represent mechanical forces acting across the blocks due to roots and soil, in tension or compression, depending on the relative position of blocks. It is a strain-step discrete element model that reproduces the self-organized redistribution of forces on a slope during a rainfall-triggered shallow landslide. The innovative aspect of this model is a complete evaluation of the effects of roots on slope stability calculated using the Root Bundle Model with Weibull survival function  (RBMw, Schwarz et al, 2013).</p><p>In this case study, SOSlope was used to reconstruct a critical shallow landslide triggering and to observe how the factor of safety changes depending on the presence, or not, of vegetation. The study area is located in the north-eastern part of the Oltrepò Pavese (Pavia, Italy), and is characterized by a high density of past landslides as reported in the database of Italian landslide inventories (IFFI). In the past, the common land use was vineyards, abandoned in the 1980s. Presently, the vegetation consists of grasses and shrubs moving to a thinned forest of young Robinia pseudoacacia L.    </p><p>On 27 and 28 April 2009 a shallow landslide triggered after an intense and prolonged rainfall event (160 mm accumulated in 62 h with a maximum intensity of 22.6 mm/h). A large number of shallow landslides occurred in the surrounding area with about 29 landslides per km<sup>2</sup> (1600 landslides in 240 km<sup>2</sup>). Five years later, on 28 February - 2 March 2014, 15 meters from a monitoring station and close to the previously affected area, another superficial landslide was triggered after 30 days of rain with a total precipitation of 105.5 mm (68.9 mm in 42 h recorded by the rain gauge of the monitoring station). In addition to the significance of this large landslide, this case study was scientifically important because it wasthe first documented case of a natural shallow landslide induced by rainfall since the 1950s (Bordoni et al, 2015).</p><p>The results of SOSlope simulations show good agreement with the real event of 28 February - 2 March 2014, and emphasize the important role of tree roots in the variation of the factor of safety. In this specific case, adding trees results in a reduction of about 39% of the dimensions of the unstable area.</p>

2017 ◽  
Author(s):  
Denis Cohen ◽  
Massimiliano Schwarz

Abstract. Tree roots have long been recognized to increase slope stability by reinforcing the strength of soils. Slope stability models include the effects of roots by adding an apparent cohesion to the soil to simulate root strength. No model includes the combined effects of root distribution heterogeneity, stress-strain behavior of root reinforcement, or root strength in compression. Recent field observations, however, indicate that shallow landslide triggering mechanisms are characterized by differential deformation that indicates localized activation of zones in tension, compression, and shear in the soil. These observations contradict the common assumptions used in present models. Here we describe a new model for slope stability that specifically considers these effects. The model is a strain-step discrete element model that reproduces the self-organized redistribution of forces on a slope during rainfall-triggered shallow landslides. We use a conceptual sigmoidal-shaped hillslope with a clearing in its center to explore the effects of tree size, spacing, weak zones, maximum root-size diameter, and different root strength configurations. The model is driven by root data of Norway spruce obtained from laboratory and field measurements. Simulation results indicate that tree roots can stabilize slopes that would otherwise fail without them and, in general, higher root density with higher root reinforcement results in a more stable slope. Root tension provides more resistance to failure than root compression but roots with both tension and compression offer the best resistance to failure. Lateral (slope-parallel) tension can be important in cases when the magnitude of these forces is comparable to the slope-perpendicular tensile forces. In these cases, lateral forces can bring to failure tree-covered areas with high root reinforcement. Slope failure occurs when downslope soil compression reaches the soil maximum strength. When this occurs depends on the amount of root tension upslope in both the slope-perpendicular and slope-parallel directions. Roots in tension can prevent failure by reducing soil compressive forces downslope. When root reinforcement is limited, hillslopes form a crack parallel to the slope near its top. Simulations with roots that fail across this crack always resulted in a landslide. Slopes that did not form a crack could either fail or remain stable, depending on root reinforcement. Tree spacing is important for the location of weak zones but tree location on the slope (with respect to where a crack opens) is as important. Finally, for the specific cases tested here, large roots, greater than 20 mm, are too few too contribute significantly to root reinforcement. Omitting roots larger than 8 mm predicted a landslide when none should have occurred. Intermediate roots (5 to 20 mm) appear to contribute most to root reinforcement and should be included in calculations. To fully understand the mechanisms of shallow landslide triggering requires a complete re-evaluation of the traditional apparent-cohesion approach that does not reproduce the incremental loading of roots in tension or in compression. Our model shows that it is important to consider the forces held by roots in a way that is entirely different than done thus far. Our work quantifies the contribution of roots in tension and compression which now finally permits to analyze more realistically the role of root reinforcement during the triggering of shallow landslides.


2020 ◽  
Vol 200 ◽  
pp. 02006
Author(s):  
Shofwatul Fadilah ◽  
Djoko Luknanto

Rainfall is the most common cause of landslides in Indonesia. On March 17, 2019, a landslide occurred in the Imogiri Cemetery, Mataram Royal Kings Graveyard Complex. It was expected to have been triggered by heavy rainfall of 148 mm d–1 intensity. This research aims to determine the effect of rainfall on the slope stability on the landslide at the Imogiri Cemetery. The study was carried out by slope stability modelling using Geostudio software. Rainfall information and soil characteristics data obtained from testing soil samples in the Soil Mechanics Laboratory, Civil and Environmental Engineering, Universitas Gadjah Mada, were used as input on the software. The output of the analysis is the factor of safety (FS) value, defined as the ratio of the shear strength to the shear stress. Without the rains, the FS value is about 2.44, which means the slope stability is stable. After heavy rainfall, the FS value decreased to 1.209 at the end of the simulation, which indicates happen the slope instability. Based on the simulation, the FS value depends on the volume of water content and hydraulic conductivity of the soil. Result of this study shows that heavy rainfall can trigger slope instability in the Imogiri Cemetery.


2016 ◽  
Vol 78 (5-2) ◽  
Author(s):  
Werasak Raongjant ◽  
Meng Jing

The Rapid drawdown condition is one of the most dangerous conditions for earth slopes. The change of water level in reservoir always causes a slope failure. This paper presents an investigation on the slope stability of the Rama 9 Reservoir under different drawdown conditions depending on the drawdown ratio, the drawdown rate and the loading conditions. Finite element analysis program PLAXIS 2D 2012 were applied to define the displacement and the factor of safety for slopes at selected positions. The results shown that, in the rapid drawdown condition for the drawdown ratio of 0.75, the factor of safety is 1.16.  In the slow drawdown condition for the drawdown ratio of 1.00, the factor of safety is 1.26. Both are less than the ratio of allowable security value of 1.3. For the Rama 9 Reservoir, the reduction of the water level should be controlled more carefully. 


2017 ◽  
Vol 5 (3) ◽  
pp. 451-477 ◽  
Author(s):  
Denis Cohen ◽  
Massimiliano Schwarz

Abstract. Tree roots have long been recognized to increase slope stability by reinforcing the strength of soils. Slope stability models usually include the effects of roots by adding an apparent cohesion to the soil to simulate root strength. No model includes the combined effects of root distribution heterogeneity, stress-strain behavior of root reinforcement, or root strength in compression. Recent field observations, however, indicate that shallow landslide triggering mechanisms are characterized by differential deformation that indicates localized activation of zones in tension, compression, and shear in the soil. Here we describe a new model for slope stability that specifically considers these effects. The model is a strain-step discrete element model that reproduces the self-organized redistribution of forces on a slope during rainfall-triggered shallow landslides. We use a conceptual sigmoidal-shaped hillslope with a clearing in its center to explore the effects of tree size, spacing, weak zones, maximum root-size diameter, and different root strength configurations. Simulation results indicate that tree roots can stabilize slopes that would otherwise fail without them and, in general, higher root density with higher root reinforcement results in a more stable slope. The variation in root stiffness with diameter can, in some cases, invert this relationship. Root tension provides more resistance to failure than root compression but roots with both tension and compression offer the best resistance to failure. Lateral (slope-parallel) tension can be important in cases when the magnitude of this force is comparable to the slope-perpendicular tensile force. In this case, lateral forces can bring to failure tree-covered areas with high root reinforcement. Slope failure occurs when downslope soil compression reaches the soil maximum strength. When this occurs depends on the amount of root tension upslope in both the slope-perpendicular and slope-parallel directions. Roots in tension can prevent failure by reducing soil compressive forces downslope. When root reinforcement is limited, a crack parallel to the slope forms near the top of the hillslope. Simulations with roots that fail across this crack always resulted in a landslide. Slopes that did not form a crack could either fail or remain stable, depending on root reinforcement. Tree spacing is important for the location of weak zones but tree location on the slope (with respect to where a crack opens) is as important. Finally, for the specific cases tested here, intermediate-sized roots (5 to 20 mm in diameter) appear to contribute most to root reinforcement. Our results show more complex behaviors than can be obtained with the traditional slope-uniform, apparent-cohesion approach. A full understanding of the mechanisms of shallow landslide triggering requires a complete re-evaluation of this traditional approach that cannot predict where and how forces are mobilized and distributed in roots and soils, and how these control shallow landslides shape, size, location, and timing.


2021 ◽  
Vol 14 (7) ◽  
Author(s):  
Chao Liang ◽  
Zhijian Wu ◽  
Xinfu Liu ◽  
Zhaomei Xiong ◽  
Tao Li

Sign in / Sign up

Export Citation Format

Share Document