Nd and Pb isotopes from the Lake of the Woods greenstone belt, northwestern Ontario: implications for mantle evolution and the formation of crust in the southern Superior Province

2000 ◽  
Vol 37 (12) ◽  
pp. 1677-1689 ◽  
Author(s):  
John A Ayer ◽  
Jaroslav Dostal

Nd and Pb isotopes from the Lake of the Woods greenstone belt indicate the presence of three distinct reservoir sources: old enriched crust (>3.0 Ga); pre-2.7 Ga, homogeneous depleted mantle; and post-2.70 Ga heterogeneous mantle. EpsilonNd values of +1.1 to +2.3 for ultramafic to felsic metavolcanic rocks (2.74–2.72 Ga) indicate derivation from depleted mantle. The εNd value of –0.9 for younger turbidite (2.71 Ga), in conjunction with detrital zircon ages ranging from 2.72 to 3.0 Ga, indicates detritus from local greenstone belt sources (depleted mantle) mixed with an older crustal source. Post-2.70 Ga heterogeneity is demonstrated by εNd values ranging from –0.4 to +0.4 in shoshonitic to calc-alkaline metavolcanic rocks and +2.1 in a coeval ultrapotassic pluton. Pb isotopes from the pluton indicate derivation from a depleted mantle reservoir with an initial 207Pb/204Pb of 14.52, an initial 206Pb/204Pb of 13.29, and µ1 of 7.86. Isotopic comparison with post-2.70 Ga potassic suites from across the Superior Province indicates widespread mixing between depleted mantle and enriched end members. The enriched end member has isotopic characteristics of rocks derived from old crustal terrains, such as the Winnipeg River and Opatica subprovinces. This type of isotopic heterogeneity could be the result of crustal contamination or derivation from metasomatized mantle. Contamination of the mantle wedge by influx of fluids derived from partial melting of isotopically evolved, subducted sediments is favoured for the Superior Province potassic suite, because elevated concentration of Sr, Nd, and Pb in conjunction with primitive Mg#s suggest only limited crustal contamination has occurred.

2020 ◽  
Author(s):  
Anshuman Giri ◽  
Rajagopal Anand

<p>The archaean greenstone belts, dominated by mafic to felsic volcanic rocks followed by younger granitic intrusions occurs associated with volcano-sedimentary sequences. The Dharwar Super group (2600 to 2900 Ma) of rocks in western Dharwar craton, underlie the older TTG gneisses. The Shimoga greenstone belt (SGB) of WDC constitute the basal polymictic conglomerate along with quartzite, pyroclastic rocks, carbonaceous rocks, greywacke-argillite sequences with a thick pile of mafic and felsic metavolcanic rocks (BADR). These rocks are suffered from greenschist to lower amphibolite grade of metamorphism. The Medur metavolcanic volcanic rocks give an age of 2638 ± 66 Ma (1), whereas the Daginakatte felsic volcanic rocks give an age of 2601 ± 6 Ma (2). The present studied age of 2638 ± 66 Ma, tells about the cessation of mafic magmatism in WDC. The metavolcanic rocks of the Medur formation are tholeiitic to calc-alkaline in nature. These rocks show flat to LREE enriched REE pattern with negative europium anomaly. And also show enrichment in LILE and depletion in HFSE elements with significant Nb-Ta anomaly. The geochemical and the isotope data suggest the involvement of partial melting of the depleted mantle by the slab components and assimilation fractional crystallization (AFC) processes for the magma generation. The SGB metavolcanic rocks have 143Nd/144Nd ratios (0.511150 to .513076) and εNd values of -3.1 to -5.5 and the negative εNd values  for the rocks is due to the crustal contamination of the magma in a shallow marine subduction setting. The parental magmas were derived from melting in the mantle wedge fluxed by slab derived fluids and slab components followed by assimilation fractional crystallization (AFC) processes involving continental crust in an active continental margin.</p><ul><li>(1) Giri et al., 2019. Lithos, <strong>330-331</strong>, 177-193</li> <li>(2) Trendall et al., 1997a. J. Geol. Soc. India, <strong>50</strong>, 25-50.</li> </ul>


2006 ◽  
Vol 43 (7) ◽  
pp. 967-993 ◽  
Author(s):  
M Melnyk ◽  
D W Davis ◽  
A R Cruden ◽  
R A Stern

Layered gneisses in the Winnipeg River subprovince contain magmatic zircon with U–Pb ages of 3317 ± 9 and 3055 ± 4 Ma at Tannis Lake, and ~3170 and 3255 ± 5 Ma at Cedar Lake, indicating widespread occurrence of Mesoarchean crust. This is in contrast to the well-documented Neoarchean age of the western Wabigoon subprovince. Further geochronology using both SHRIMP (sensitive high resolution ion microprobe) and ID-TIMS (isotope dilution thermal ionization mass spectrometry), combined with structural observations, in the Kenora area and Lake of the Woods greenstone belt show the effects of juxtaposition of these two terranes. Isoclinally folded gneiss north of the subprovince boundary zone near Kenora gives a magmatic age of 2882 ± 2 Ma with 3051 ± 6 Ma inheritance. Ages of syntectonic dykes show that asymmetric refolding of these gneisses occurred between 2717 ± 2 and about 2713 ± 1 Ma. Subsequent regional vertical flattening and horizontal extension are dated at 2708 ± 2 Ma by syntectonic tonalite sheets. These events are broadly coeval with deposition of orogenic sediments in the Warclub Group and a first stage of regional folding (age brackets of 2716–2709 Ma) in the Lake of the Woods greenstone belt to the south. A second stage of folding and regional faulting in the greenstone belt occurred about 2695 ± 4 Ma and is approximately coeval with open upright folding in the Winnipeg River subprovince. These observations are consistent with overthrusting and collapse of a Mesoarchean continental terrane by a juvenile Neoarchean arc terrane over the time span 2717–2695 Ma.


1990 ◽  
Vol 27 (4) ◽  
pp. 582-589 ◽  
Author(s):  
S. L. Jackson ◽  
R. H. Sutcliffe

Published U–Pb geochronological, geological, and petrochemical data suggest that there are late Archean ensialic greenstone belts (GB) (Michipicoten GB and possibly the northern Abitibi GB), ensimatic greenstone belts (southern Abitibi GB and Batchawana GB), and possibly a transitional ensimatic–ensialic greenstone belt (Swayze GB) in the central Superior Province. This lateral crustal variability may preclude simple correlation of the Michipicoten GB and its substrata, as exposed in the Kapuskasing Uplift, with that of the southern Abitibi GB. Furthermore, this lateral variability may have determined the locus of the Kapuskasing Uplift. Therefore, although the Kapuskasing Uplift provides a useful general crustal model, alternative models of crustal structure and tectonics for the southern Abitibi GB warrant examination.Thrusting of a juvenile, ensimatic southern Abitibi GB over a terrane containing evolved crust is consistent with (i) the structural style of the southern Abitibi GB; (ii) juvenile southern Abitibi GB metavolcanic rocks intruded by rocks having an isotopically evolved, older component; and (iii) Proterozoic extension that preserved low-grade metavolcanic rocks within the down-dropped Cobalt Embayment, which is bounded by higher grade terranes to the east and west.


1990 ◽  
Vol 27 (5) ◽  
pp. 649-656 ◽  
Author(s):  
A. Turek ◽  
R. Keller ◽  
W. R. Van Schmus

The Mishibishu greenstone belt, located 40 km west of Wawa, is a typical Archean greenstone belt and is probably an extension of the Michipicoten belt. This belt is composed of basic to felsic metavolcanic rocks of tholeiitic to calc-alkaline affinity and of metasedimentary rocks ranging from conglomerate to argillite. Granitoids, diorites, and gabbros intrude and embay supracrustal rocks as internal and external plutons.Six U–Pb zircon ages have been obtained on rocks in this area. The oldest is 2721 ± 4 Ma for the Jostle Lake tonalite. The bulk of the volcanic rocks formed by 2696 ± 17 Ma, which is the age of the Chimney Point porphyry at the top of the volcanic pile. The Pilot Harbour granite has a similar age of 2693 ± 7 Ma. The age of the Tee Lake tonalite is 2673 ± 12 Ma, and the age of the Iron. Lake gabbro is 2671 ± 4 Ma. The youngest age for volcanics in this part of the Superior Province is 2677 ± 7 Ma, obtained from, the David Lakes pyroclastic breccia. these ages agree with those reported for the adjacent Michipicoten and Gamitagama belts.


1995 ◽  
Vol 32 (5) ◽  
pp. 614-630 ◽  
Author(s):  
Kate Maclachlan ◽  
Herb Helmstaedt

An Archean mafic dike complex in the Chan Formation at the base of the mafic volcanic section of the Yellowknife greenstone belt consists of multiple metagabbro dikes and sills separated by screens of pillowed mafic volcanic rocks, which are cut by a younger postvolcanic metadiabase dike swarm. Field relationships and geochemical characteristics are compatible with a comagmatic origin for the metagabbro and metavolcanic rocks that were fed through and deposited on an older, rift-related, supracrustal sequence of the Dwyer Group. The synvolcanic metagabbro dikes have extended the strike length of the volcanic section by at least 100%. The mafic rocks of the Chan Formation are geochemically similar to mid-ocean ridge basalt, possibly with a minor subduction-zone component. Preliminary εNd values for metagabbroic rocks are consistent with the derivation of magmas predominantly from a normal, depleted-mantle source. The Chan Formation is interpreted to have formed in a marginal basin-like setting, adjacent to a previously rifted and attenuated protocontinental margin.


2006 ◽  
Vol 43 (7) ◽  
pp. 929-945 ◽  
Author(s):  
C Sasseville ◽  
K Y Tomlinson ◽  
A Hynes ◽  
V McNicoll

In western Superior province, the North Caribou terrane (NCT) constitutes a Mesoarchean proto-continent heavily overprinted by Neoarchean magmatism and deformation resulting from the western Superior Province accretion. Locally, along the southern margin of the NCT, Mesoarchean (~3.0 Ga) rift sequences are preserved. These sequences are of key importance to our understanding of the early tectonic evolution of continental crust. The Wallace Lake greenstone belt is located at the southern margin of the NCT and includes the Wallace Lake assemblage, the Big Island assemblage, the Siderock Lake assemblage, and the French Man Bay assemblage. The Wallace Lake assemblage exposes one of the best-preserved Mesoarchean rift sequences along the southern margin of the NCT. The volcano-sedimentary assemblage (3.0–2.92 Ga) exposes arkoses derived from the uplift of a tonalite basement in a subaqueous environment, capped by carbonate and iron formation. Mafic to ultramafic volcanic rocks exhibiting crustal contamination and derived from plume magmatism cap this rift sequence. The Wallace Lake assemblage exhibits D1 Mesoarchean deformation. The Big Island assemblage comprises mafic volcanic rocks of oceanic affinity that were docked to the Wallace Lake assemblage along northwest-trending D2 shear zones. The timing of volcanism and docking of the Big Island assemblage remain uncertain. The Siderock Lake and French Man Bay assemblages were deposited in strike-slip basins related to D3 and D4 stages of movement of the transcurrent Wanipigow fault (<2.709 Ga). Regionally, the Wallace Lake assemblage correlates with the Lewis–Story Rift assemblage observed in Lake Winnipeg, whereas the Big Island assemblage appears to correlate with the Black Island assemblage observed in the Lake Winnipeg area. Thus, the North Caribou terrane appears to preserve vestiges of a Mesoarchean rifted succession together with overlying Neoarchean allochthonous, juvenile, volcanic successions over a considerable distance along its present-day southern margin.


1975 ◽  
Vol 12 (12) ◽  
pp. 2080-2085 ◽  
Author(s):  
D. E. Vogel

Chloritoid- and kyanite-bearing acid metavolcanic rocks of the Abitibi Greenstone belt have acquired an aluminum surplus by weathering prior to metamorphism. The weathering increases from the top of the volcanic unit downwards, as shown by increasing values for both Niggli-t and the Zr/P ratio. The depositional environment of these rocks is postulated to be either shallow marine or terrestrial.


1999 ◽  
Vol 36 (4) ◽  
pp. 495-510 ◽  
Author(s):  
Y Larbi ◽  
R Stevenson ◽  
F Breaks ◽  
N Machado ◽  
C Gariépy

U-Pb and Sm-Nd isotopic data are presented for leucogranites and pegmatites from the boundary zones of the English River, Winnipeg River, and Wabigoon subprovinces in the late Archean Superior Province of northwestern Ontario. The Ghost Lake batholith and the Separation Rapids pluton are posttectonic, rare-metal-bearing, S-type leucogranites that were generated during the final stages of the amalgamation of the Superior Province. U-Pb dating of monazites yields ages of 2650 ± 3 Ma for a pegmatite from the Dryden area and 2646 ± 2 Ma for the Separation Rapids pluton. Sm-Nd data from these granitoids are compared with similar data from late Archean intrusions and adjacent rocks from the same regions. Values of εNd range from 0 to +2 for pretectonic tonalites, from -2 to +2 for both the Ghost Lake batholith and the Separation Rapids pluton, from +1 to +3.5 for metavolcanic rocks, and from -0.5 to -1.5 for metasedimentary rocks. There is an overall trend of decreasing εNd values from pretectonic tonalites to the latest leucocratic pegmatites. This reflects the origin of more and more granitoids as a result of anatexis as the crust grew and thickened through accretion. The ranges of εNd values found among leucogranites from the two regions overlap with the isotopic values of the basalts and sediments. This suggests that the leucogranites were generated by similar processes involving both a crustal and a juvenile mantle component. Furthermore, the ages from this study and from pegmatites (2652-2643 Ma) in the Bird River greenstone belt provide the best estimate of the age of rare metal mineralization in the western Superior Province. Similar ages (2651-2639 Ma) for rare-metal-bearing leucogranites in southern Abitibi subprovince suggest a specific period of emplacement over a wide area.


Sign in / Sign up

Export Citation Format

Share Document