Geochemistry and uranium-lead isotopic ages of volcanic rocks associated with Ladakh batholith, western Himalaya: Implications for petrogenesis and tectonic evolution

Author(s):  
Nongmaithem Lakhan Singh ◽  
Athokpam Krishnakanta Singh

<p>We present zircon U-Pb ages and whole-rock geochemistry along with mineral chemistry of the Khardung volcanic rocks outcropped in the northern margin of the Ladakh batholith in order to constrain their origin and tectono-magmatic history. These volcanic rocks are sandwiched between the Ladakh batholith in the south and the Shyok suture zone in the north and span a continuous compositional range from basalt to rhyolite, although mafic rocks are minor and intermediate to felsic rocks are volumetrically predominant. New zircon U-Pb dating for andesite coupled with two rhyolitic rocks yield 69.71 Ma, 62.49 Ma, and 66.55 Ma, defining the probable span of their magmatism from Late Cretaceous to Palaeogene. Based on their mineralogical and geochemical compositional diversity, the Khardung volcanic rocks are categorized as intermediate volcanic rocks (basaltic andesite-andesite) and felsic volcanic rocks (dacite-rhyolite). The intermediate volcanic rocks are marked by low SiO<sub>2</sub> (52.80-61.31 wt.%), enriched LREEs, and negative HFSEs (Nb, Ti, Zr) anomalies whereas,  felsic volcanic rocks are characterized by high SiO<sub>2</sub> (64.52-79.19 wt.%), pronounced negative Eu anomalies, enriched LREE and concave-downward HREE’s and negative HFSE’s (Nb, Ti) anomalies. Both the intermediate and felsic volcanic rocks exhibit quartz, sanidine, albite, bytownite, and diopside as their dominant mineral phases. Geochemical signatures indicate that the fractional crystallization and crustal contamination played a significant role in the evolution of the Khardung volcanic rocks and their geochemical diversity probably resulted from the partial melting of the common primary source, which had been metasomatized by variable contributions of fluids released from down going Neo-Tethyan oceanic crust. Thus, the Khardung volcanic rocks could be considered as a product of mature stage of arc magmatism during the subduction of the Neo-Tethyan oceanic crust, which occurred during Early Cretaceous to Palaeogene, prior to the main collision between the Indian and Asian plates.</p>

2016 ◽  
Vol 43 (4) ◽  
pp. 251 ◽  
Author(s):  
J. Gregory Shellnutt

The Early Permian (290 Ma) Panjal Traps are the largest contiguous outcropping of volcanic rocks associated with the Himalayan Magmatic Province (HMP). The eruptions of HMP-related lava were contemporaneous with the initial break-up of Pangea. The Panjal Traps are primarily basalt but volumetrically minor intermediate and felsic volcanic rocks also occur. The basaltic rocks range in composition from continental tholeiite to ocean-floor basalt and nearly all have experienced, to varying extent, crustal contamination. Uncontaminated basaltic rocks have Sr–Nd isotopes similar to a chondritic source (ISr = 0.7043 to 0.7073; eNd(t) = 0 ± 1), whereas the remaining basaltic rocks have a wide range of Nd (eNd(t) = –6.1 to +4.3) and Sr (ISr = 0.7051 to 0.7185) isotopic values. The calculated primary melt compositions of basalt are picritic and their mantle potential temperatures (TP ≤ 1450°C) are similar to ambient mantle rather than anomalously hot mantle. The silicic volcanic rocks were likely derived by partial melting of the crust whereas the andesitic rocks were derived by mixing between crustal and mantle melts. The Traps erupted within a continental rift setting that developed into a shallow sea. Sustained rifting created a nascent ocean basin that led to sea-floor spreading and the rifting of microcontinents from Gondwana to form the ribbon-like continent Cimmeria and the Neotethys Ocean.RÉSUMÉLes Panjal Traps du début Permien (290 Ma) constituent le plus grand affleurement contigu de roches volcaniques associées à la province magmatique de himalayienne (HMP). Les éruptions de lave de type HMP étaient contemporaines de la rupture initiale de la Pangée. Les Panjal Traps sont essentiellement des basaltes, mais on y trouve aussi des roches volcaniques intermédiaires et felsiques en quantités mineures. La composition de ces roches basaltiques varie de tholéiite continentale à basalte de plancher océanique, et presque toutes ont subi, à des degrés divers, une contamination de matériaux crustaux. Les roches basaltiques non contaminées ont des contenus isotopiques Sr–Nd similaires à une source chondritique (Isr = 0,7043 à 0,7073; eNd (t) = 0 ± 1), alors que les roches basaltiques autres montrent une large gamme de valeurs isotopiques en Nd (eNd (t) = –6,1 à +4,3) et Sr (Isr = de 0,7051 à 0,7185). Les compositions de fusion primaire calculées des basaltes sont picritiques et leurs températures potentielles mantelliques (TP de ≤ 1450°C) sont similaires à la température ambiante du manteau plutôt que celle d’un manteau anormalement chaud. Les roches volcaniques siliciques dérivent probablement de la fusion partielle de la croûte alors que les roches andésitiques proviennent du mélange entre des matériaux de fusion crustaux et mantelliques. Les Traps ont fait irruption dans un contexte de rift continental qui s’est développé dans une mer peu profonde. Un rifting soutenu a créé un début de bassin océanique lequel conduit à une expansion du fond océanique et au rifting de microcontinents tirés du Gondwana pour former le continent rubané de Cimméria et l'océan Néotéthys.


2020 ◽  
Author(s):  
Anshuman Giri ◽  
Rajagopal Anand

<p>The archaean greenstone belts, dominated by mafic to felsic volcanic rocks followed by younger granitic intrusions occurs associated with volcano-sedimentary sequences. The Dharwar Super group (2600 to 2900 Ma) of rocks in western Dharwar craton, underlie the older TTG gneisses. The Shimoga greenstone belt (SGB) of WDC constitute the basal polymictic conglomerate along with quartzite, pyroclastic rocks, carbonaceous rocks, greywacke-argillite sequences with a thick pile of mafic and felsic metavolcanic rocks (BADR). These rocks are suffered from greenschist to lower amphibolite grade of metamorphism. The Medur metavolcanic volcanic rocks give an age of 2638 ± 66 Ma (1), whereas the Daginakatte felsic volcanic rocks give an age of 2601 ± 6 Ma (2). The present studied age of 2638 ± 66 Ma, tells about the cessation of mafic magmatism in WDC. The metavolcanic rocks of the Medur formation are tholeiitic to calc-alkaline in nature. These rocks show flat to LREE enriched REE pattern with negative europium anomaly. And also show enrichment in LILE and depletion in HFSE elements with significant Nb-Ta anomaly. The geochemical and the isotope data suggest the involvement of partial melting of the depleted mantle by the slab components and assimilation fractional crystallization (AFC) processes for the magma generation. The SGB metavolcanic rocks have 143Nd/144Nd ratios (0.511150 to .513076) and εNd values of -3.1 to -5.5 and the negative εNd values  for the rocks is due to the crustal contamination of the magma in a shallow marine subduction setting. The parental magmas were derived from melting in the mantle wedge fluxed by slab derived fluids and slab components followed by assimilation fractional crystallization (AFC) processes involving continental crust in an active continental margin.</p><ul><li>(1) Giri et al., 2019. Lithos, <strong>330-331</strong>, 177-193</li> <li>(2) Trendall et al., 1997a. J. Geol. Soc. India, <strong>50</strong>, 25-50.</li> </ul>


1995 ◽  
Vol 32 (12) ◽  
pp. 2147-2158 ◽  
Author(s):  
A. L. Grammatikopoulos ◽  
Sandra M. Barr ◽  
P. H. Reynolds ◽  
R. Doig

The Mechanic Settlement Pluton, located at the northern margin of the Caledonian Highlands in southern New Brunswick, is composed of rocks ranging from ultramafic (lherzolite, plagioclase-bearing lherzolite) through mafic (mainly olivine gabbronorite and gabbro) to intermediate (quartz diorite and monzodiorite). Spatial distribution of these lithologies, textural features, and geochemistry are consistent with evolution of a tholeiitic mafic parent magma by crystal fractionation processes, with some evidence for magma mingling between evolved gabbroic and quartz dioritic magmas. The dioritic rocks form most of the southwestern (upper?) part of the pluton, whereas the varied gabbroic rocks with ultramafic layers form the northeastern part. U–Pb (zircon) dating of a quartz diorite sample from the southwestern part of the pluton indicates crystallization at 557 ± 3 Ma. Amphibole and phlogopite in two lherzolite samples from the northeastern part of the pluton gave 40Ar/39Ar dates of 550 ± 5 and 539 ± 5 Ma, respectively, indicating that the pluton cooled rapidly through the closure temperature for amphibole, with subsequent slower cooling to the time of phlogopite closure. The pluton is interpreted to be the intrusive equivalent of basaltic units in the host Coldbrook Group, analogous to granitic plutons elsewhere in the Caledonian Highlands which appear to be the intrusive equivalents of felsic volcanic rocks in the group. These plutonic and volcanic rocks represent a major, short-lived (ca. 560–550 Ma), dominantly bimodal igneous event, apparently related to late Precambrian extension within the Avalon terrane of southern New Brunswick.


2021 ◽  
Vol 62 (10) ◽  
pp. 1175-1187
Author(s):  
A.D. Nozhkin ◽  
O.M. Turkina ◽  
K.A. Savko

Abstract —The paper presents results of a petrogeochemical and isotope–geochronological study of the granite–leucogranite association of the Pavlov massif and felsic volcanics from the Elash graben (Biryusa block, southwest of the Siberian craton). A characteristic feature of the granite–leucogranites is their spatial and temporal association with vein aplites and pegmatites of the East Sayan rare-metal province. The U–Pb age of zircon from granites of the Pavlov massif (1852 ± 5 Ma) is close to the age of the pegmatites of the Vishnyakovskoe rare-metal deposit (1838 ± 3 Ma). The predominant biotite porphyritic granites and leucogranites of the Pavlov massif show variable alkali ratios (K2O/Na2O = 1.1–2.3) and ferroan (Fe*) index and a peraluminous composition; they are comparable with S-granites. The studied rhyolites of the Tagul River (SiO2 = 71–76%) show a low ferroan index, a high K2O/Na2O ratio (1.6–4.0), low (La/Yb)n values (4.3–10.5), and a clear Eu minimum (Eu/Eu* = 0.3–0.5); they are similar to highly fractionated I-granites. All coeval late Paleoproterozoic (1.88–1.85 Ga) granites and felsic volcanics of the Elash graben have distinct differences in composition, especially in the ferroan index and HREE contents, owing to variations in the source composition and melting conditions during their formation at postcollisions extension. The wide range of the isotope parameters of granites and felsic volcanic rocks (εNd from +2.0 to –3.7) and zircons (εHf from +3.0 to +0.8, granites of the Toporok massif) indicates the heterogeneity of the crustal basement of the Elash graben, which formed both in the Archean and in the Paleoproterozoic.


2010 ◽  
Vol 47 (12) ◽  
pp. 1481-1506 ◽  
Author(s):  
Vicki McNicoll ◽  
Gerry Squires ◽  
Andrew Kerr ◽  
Paul Moore

The Duck Pond Cu–Zn–Pb–Ag–Au deposit in Newfoundland is hosted by volcanic rocks of the Cambrian Tally Pond group in the Victoria Lake supergroup. In conjunction with the nearby Boundary deposit, it contains 4.1 million tonnes of ore at 3.3% Cu, 5.7% Zn, 0.9% Pb, 59 g/t Ag, and 0.9 g/t Au. The deposits are hosted by altered felsic flows, tuffs, and volcaniclastic sedimentary rocks, and the sulphide ores formed in part by pervasive replacement of unconsolidated host rocks. U–Pb geochronological studies confirm a long-suspected correlation between the Duck Pond and Boundary deposits, which appear to be structurally displaced portions of a much larger mineralizing system developed at 509 ± 3 Ma. Altered aphyric flows in the immediate footwall of the Duck Pond deposit contained no zircon for dating, but footwall stringer-style and disseminated mineralization affects rocks as old as 514 ± 3 Ma at greater depths below the ore sequence. Unaltered mafic to felsic volcanic rocks that occur structurally above the orebodies were dated at 514 ± 2 Ma, and hypabyssal intrusive rocks that cut these were dated at 512 ± 2 Ma. Some felsic samples contain inherited (xenocrystic) zircons with ages of ca. 563 Ma. In conjunction with Sm–Nd isotopic data, these results suggest that the Tally Pond group was developed upon older continental or thickened arc crust, rather than in the ensimatic (oceanic) setting suggested by previous studies.


Author(s):  
Dennis Sánchez-Mora ◽  
Christopher R.M. McFarlane ◽  
James A Walker ◽  
David R. Lentz

Gold mineralization at Williams Brook in northern New Brunswick is hosted within the Siluro-Devonian, bimodal, volcano-sedimentary rocks of the Tobique-Chaleur Zone (Wapske Formation). Gold mineralization occurs in two styles: 1) as disseminations (refractory gold) in rhyolite, and 2) in cross-cutting quartz veins (free gold). Dating of the felsic volcanic host rocks by in situ LA-ICP-MS zircon U-Pb geochronology returned ages of 422 ± 3, 409 ± 2, 408 ± 3, 405 ± 2, 401 ± 9 Ma. Zr/Y of subvolcanic felsic intrusion (<8 for syn-mineralization and >8 for post-mineralization) suggests evolution from transitional to more alkalic affinities. Two mineralizing events are recognized; the first is a disseminated mineralization style formed at ~422–416 Ma and the second consists of quartz vein-hosted gold emplaced at 410–408 Ma. Felsic rocks from Williams Brook and elsewhere in the Tobique Group (i.e. Wapske, Costigan Mountain, and Benjamin formations), and the Coastal Volcanic Belt have similar Th/Nb ratios of ~0.1 to 1, reflecting similar levels of crustal contamination, and similar Nb and Y content, suggesting A-type affinities. These data indicate a similar environment of formation. Regionally, mafic rocks show similar within-plate continental signatures and an E-MORB mantle source that formed from partial melts of 10–30%. Mafic volcanic rocks from Williams Brook have a more alkaline affinity (based on Ti/V), and derivation from lower percentage partial melting (~5%). The chemical and temporal variations in the Williams Brook rocks suggest that they were erupted in an evolving transpressional tectonic setting during the oblique convergence of Gondwana and Laurentia.


Sign in / Sign up

Export Citation Format

Share Document