Hydrodynamic rainfall-runoff modeling using different approaches for runoff creation

Author(s):  
Karl Broich ◽  
Thomas Pflugbeil ◽  
Johannes Mitterer ◽  
Markus Disse

<p>After extreme flash floods events 2016 in Bavaria, the cooperation project HiOS (reference map for surface runoff and flash floods) was started aiming at the detailed analysis of risk generated by flash floods using GIS methods as well as hydrological and hydrodynamic models. Part of the risk analysis is done using hydrodynamic rainfall-runoff modeling (HDRRM). HDRRM gets more and more popular since hydrodynamic models are able to accept rainfall as input. But most of the known hydrodynamic models have no integrated precipitation modules and therefore cannot be used uniquely for rainfall-runoff modeling. In this study, TELEMAC-2D is used for HDRRM because it already contains the SCS-CN-method and offers the possibility to implement new precipitation modules due to its open source license. An additional advantage of TELEMAC-2D is the good scaling on HPC cluster systems.</p><p>In this study, two different approaches for runoff creation will be compared. (1) The well-proven SCS-CN method calculates effective rain. Due to its simple structure, the process of runoff generation is completely decoupled from runoff concentration. Consequently, SCS-CN cannot account for re-infiltration due to surface runoff. (2) However, the Green-Ampt infiltration (GAI) is coupled to surface runoff as long as the water depth is non-zero. GAI is implemented recently and thus will be described in more detail. Both approaches are first tested using a simple model setup. The general model performance of the enhanced hydrodynamic rainfall-runoff modeling (EHDRRM) is verified using the case study Simbach/Triftern in Bavaria. This extreme flash flood event from 1<sup>st</sup> June 2016 hit the townships Simbach am Inn and Triftern. It is well documented and all necessary data is available in good quality. The main setup for the catchment area of 47 km² resp. 90 km² is built on a 1x1 m DEM, land use data, hydrological soil group data and 5 min-RADOLAN precipitation data. The calculated catchment outflow can be verified by measured data at the gauging stations in Simbach am Inn resp. Triftern. All comparisons include as reference results for precipitation without losses by infiltration.</p><p>The hydrodynamic precipitation runoff modeling HDRRM has proven to be a useful method for calculating flow paths, depths and velocities with a high spatial resolution during flash flood events. If the process of runoff generation is performed by the hydrodynamic model EHDRRM then the quality of results is improved significantly while keeping the modeling procedure simple. Concerning infiltration, EHDRRM allows for a physically correct representation taking the actual local water depth into consideration.</p>

2020 ◽  
Author(s):  
Thomas Pflugbeil ◽  
Karl Broich ◽  
Johannes Mitterer ◽  
Fabian von Trentini ◽  
Florian Willkofer ◽  
...  

<p>Heavy rainfall and resulting flash flood events have been in the focus of research and the public in recent years. The relevance of the topic will become more prominent with increasing temperatures due to climate change. Extreme rainfall events in Germany like 2014 in Münster (North Rhine-Westphalia) or 2016 in Simbach am Inn (Bavaria) and Braunsbach (Baden-Wurttemberg) have also raised public awareness.</p><p>Hydrodynamic models for the simulation of fluvial events have been developed for a long time and are often used. However, the question arises to what extent these methods can be used for pluvial events. Hydrodynamic models allowing precipitation input are therefore well suited for the simulation of pluvial events, as they can display flow paths, depths, and velocities in high resolution. Nevertheless, defining precipitation without infiltration leads to an overestimation of the surface runoff. For this problem, an improved event simulation can be achieved by nesting hydrological processes into the hydrodynamic simulation procedure. In this study, we are using TELEMAC-2D as a hydrodynamic model because it uses precipitation in a spatially and temporally distributed manner and can be used very well by high-performance computing. LARSIM (Large Area Runoff Simulation Model) and WaSiM (Water Flow and Balance Simulation Model) are used as hydrological models.</p><p>The methodology for simulating flash floods can be divided into two important processes: runoff generation and runoff concentration. These are divided according to the strength of the respective model types:</p><ul><li>Runoff generation: SCS-CN value method (TELEMAC-2D), Green Ampt method (LARSIM), layer-resolving Richards method (WaSiM)</li> <li>Runoff concentration: Strickler roughness approach (TELEMAC-2D), Kalinin-Miljukov method (LARSIM), flow time index method (WaSiM)</li> </ul><p>In this study, we examine three different types of couplings:</p><ul><li>(1) The runoff concentration is calculated using the hydrodynamic model, the runoff generation is carried out using the CN value method.</li> <li>(2) The runoff generation in the entire catchment is calculated using the hydrological processes (LARSIM/WaSiM). The runoff concentration is still generated by the hydrodynamic model.</li> <li>(3) The runoff concentration in the upper catchment area is also calculated using hydrological methods, only the urban area is calculated hydrodynamically.</li> </ul><p>We compare the different coupling types with each other using some real flash flood events. The results are presented with the aim to identify which approach is necessary for a good representation of the flash flood event. This depends mainly on the local conditions in the catchment area (e.g.  culverts, land use) and the rainfall event (e.g. rainfall intensity and duration). The findings from this study will be transferred to unobserved catchments in the further course.</p>


2004 ◽  
Vol 8 (5) ◽  
pp. 903-922 ◽  
Author(s):  
M. Bari ◽  
K. R. J. Smettem

Abstract. A conceptual water balance model is presented to represent changes in monthly water balance following land use changes. Monthly rainfall–runoff, groundwater and soil moisture data from four experimental catchments in Western Australia have been analysed. Two of these catchments, "Ernies" (control, fully forested) and "Lemon" (54% cleared) are in a zone of mean annual rainfall of 725 mm, while "Salmon" (control, fully forested) and "Wights" (100% cleared) are in a zone with mean annual rainfall of 1125 mm. At the Salmon forested control catchment, streamflow comprises surface runoff, base flow and interflow components. In the Wights catchment, cleared of native forest for pasture development, all three components increased, groundwater levels rose significantly and stream zone saturated area increased from 1% to 15% of the catchment area. It took seven years after clearing for the rainfall–runoff generation process to stabilise in 1984. At the Ernies forested control catchment, the permanent groundwater system is 20 m below the stream bed and so does not contribute to streamflow. Following partial clearing of forest in the Lemon catchment, groundwater rose steadily and reached the stream bed by 1987. The streamflow increased in two phases: (i) immediately after clearing due to reduced evapotranspiration, and (ii) through an increase in the groundwater-induced stream zone saturated area after 1987. After analysing all the data available, a conceptual monthly model was created, comprising four inter-connecting stores: (i) an upper zone unsaturated store, (ii) a transient stream zone store, (ii) a lower zone unsaturated store and (iv) a saturated groundwater store. Data such as rooting depth, Leaf Area Index, soil porosity, profile thickness, depth to groundwater, stream length and surface slope were incorporated into the model as a priori defined attributes. The catchment average values for different stores were determined through matching observed and predicted monthly hydrographs. The observed and predicted monthly runoff for all catchments matched well with coefficients of determination (R2) ranging from 0.68 to 0.87. Predictions were relatively poor for: (i) the Ernies catchment (lowest rainfall, forested), and (ii) months with very high flows. Overall, the predicted mean annual streamflow was within ±8% of the observed values. Keywords: monthly streamflow, land use change, conceptual model, data-based approach, groundwater


2010 ◽  
Vol 10 (4) ◽  
pp. 805-817 ◽  
Author(s):  
P.-A. Versini ◽  
E. Gaume ◽  
H. Andrieu

Abstract. This paper presents an initial prototype of a distributed hydrological model used to map possible road inundations in a region frequently exposed to severe flash floods: the Gard region (South of France). The prototype has been tested in a pseudo real-time mode on five recent flash flood events for which actual road inundations have been inventoried. The results are promising: close to 100% probability of detection of actual inundations, inundations detected before they were reported by the road management field teams with a false alarm ratios not exceeding 30%. This specific case study differs from the standard applications of rainfall-runoff models to produce flood forecasts, focussed on a single or a limited number of gauged river cross sections. It illustrates that, despite their lack of accuracy, hydro-meteorological forecasts based on rainfall-runoff models, especially distributed models, contain valuable information for flood event management. The possible consequences of landslides, debris flows and local erosion processes, sometimes associated with flash floods, were not considered at this stage of development of the prototype. They are limited in the Gard region but should be taken into account in future developments of the approach to implement it efficiently in other areas more exposed to these phenomena such as the Alpine area.


2016 ◽  
Vol 64 (4) ◽  
pp. 304-315 ◽  
Author(s):  
Kamila Hlavčová ◽  
Silvia Kohnová ◽  
Marco Borga ◽  
Oliver Horvát ◽  
Pavel Šťastný ◽  
...  

Abstract This work examines the main features of the flash flood regime in Central Europe as revealed by an analysis of flash floods that have occurred in Slovakia. The work is organized into the following two parts: The first part focuses on estimating the rainfall-runoff relationships for 3 major flash flood events, which were among the most severe events since 1998 and caused a loss of lives and a large amount of damage. The selected flash floods occurred on the 20th of July, 1998, in the Malá Svinka and Dubovický Creek basins; the 24th of July, 2001, at Štrbský Creek; and the 19th of June, 2004, at Turniansky Creek. The analysis aims to assess the flash flood peaks and rainfall-runoff properties by combining post-flood surveys and the application of hydrological and hydraulic post-event analyses. Next, a spatially-distributed hydrological model based on the availability of the raster information of the landscape’s topography, soil and vegetation properties, and rainfall data was used to simulate the runoff. The results from the application of the distributed hydrological model were used to analyse the consistency of the surveyed peak discharges with respect to the estimated rainfall properties and drainage basins. In the second part these data were combined with observations from flash flood events which were observed during the last 100 years and are focused on an analysis of the relationship between the flood peaks and the catchment area. The envelope curve was shown to exhibit a more pronounced decrease with the catchment size with respect to other flash flood relationships found in the Mediterranean region. The differences between the two relationships mainly reflect changes in the coverage of the storm sizes and hydrological characteristics between the two regions.


2016 ◽  
Vol 47 (6) ◽  
pp. 1142-1160 ◽  
Author(s):  
Mohamed El Alfy

This study uses an integrated approach, bringing together geographic information system (GIS), remote sensing, and rainfall–runoff modeling, to assess the urbanization impact on flash floods in arid areas. Runoff modeling was carried out as a function of the catchment characteristics and the maximum daily rainfall parameters. Land-use types were extracted from the supervised classification of SPOT-5 (2010) and Landsat-8 (2015) satellite images and were validated during field checks. Catchment morphometric characteristics were carried out using the correlated Topaz and Arc-Hydro tools. Maximum floods of the catchment were evaluated by coupling GIS and remote sensing with Hydrologic Engineering Center–Hydrologic Modeling System (HEC-HMS) hydrologic modeling. Peak discharges were estimated, and the abstraction losses were computed for different return periods. The model results were calibrated according to actual runoff event. The research shows that rapid urbanization adversely affects hydrological processes, since the sprawl on the alluvial channels is significant. This reduces infiltration into the underlying alluvium and increases runoff, leading to higher flood peaks and volumes even for short duration low intensity rainfall. To retain a considerable amount of water and sediments in these arid areas, construction of small dams at the fingertip channels at the outlet of the lower order sub-basins is recommended.


2017 ◽  
Author(s):  
Guillaume Le Bihan ◽  
Olivier Payrastre ◽  
Eric Gaume ◽  
David Moncoulon ◽  
Frederic Pons

Abstract. Up to now, flash flood monitoring and forecasting systems, based on rainfall radar measurements and distributed rainfall-runoff models, generally aimed at estimating flood magnitudes - typically discharges or return periods – at selected river cross-sections. The approach presented here goes one step ahead by proposing an integrated forecasting chain for the direct assessment of flash flood possible impacts on inhabited areas (number of buildings at risk in the presented case studies). The proposed approach includes, in addition to a distributed rainfall-runoff model, an automatic hydraulic method suited for the computation of flood extent maps on a dense river network and over large territories. The resulting catalogue of flood extent maps is then combined with land use data to build a flood impact curve for each considered river reach: i.e. number of inundated buildings versus discharge. Theses curves are finally used to compute estimated impacts based on forecasted discharges. The approach has been extensively tested in the regions of Alès and Draguignan, located in the South of France, where well documented major flash floods recently occurred. The article presents two types of validation results. First, the automatically computed flood extent maps and corresponding water levels are tested against rating curves at available river gauging stations as well as against local reference or observed flood extent maps. Second, a rich and comprehensive insurance claim database is used to evaluate the relevance of the estimated impacts for some recent major floods.


2020 ◽  
Author(s):  
Takahiro Sayama ◽  
Masafumi Yamada ◽  
Yoshito Sugawara ◽  
Dai Yamazaki

Abstract The heavy rain event of July 2018 and Typhoon Hagibis in October 2019 caused severe flash flood disasters in numerous parts of western and eastern Japan. Flash floods need to be predicted over a wide range with long forecasting lead time for effective evacuation. The predictability of flash floods caused by the two extreme events are investigated by using a high-resolution (~150 m) nationwide distributed rainfall-runoff model forced by ensemble precipitation forecasts with 39-h lead time. Results of the deterministic simulation at nowcasting mode with radar and gauge composite rainfall could reasonably simulate the storm runoff hydrographs at many dam reservoirs over western Japan for the case of heavy rainfall in 2018 (F18) with the default parameter setting. For the case of Typhoon Hagibis in 2019 (T19), a similar performance was obtained by incorporating unsaturated flow effect in the model applied to Kanto region. The performance of the ensemble forecast was evaluated based on the bias ratios and the relative operating characteristic curves, which suggested the higher predictability in peak runoff for T19. For the F18, the uncertainty arises due to the difficulty in accurately forecasting the storm positions by the frontal zone; as a result, the actual distribution of the peak runoff could not be well forecasted. Overall, this study showed that the predictability of flash floods was different between the two extreme events. The ensemble spreads contain quantitative information of predictive uncertainty, which can be utilized for the decision making of emergency responses against flash floods.


2018 ◽  
Vol 13 (4) ◽  
pp. 780-792
Author(s):  
Mohammad Hossain Mahtab ◽  
Miho Ohara ◽  
Mohamed Rasmy ◽  
◽  

The north-eastern part of Bangladesh is very productive for agriculture and fishing, and the region involves several depressed (haor) areas. Flash floods during the pre-monsoon period bring devastating damage to agriculture in the haor region recurrently. To protect crops from flash floods, the Bangladesh Water Development Board constructed several ring-type submersible embankments. In this research, we have investigated the effectiveness of submersible embankments in controlling flash flooding in the Matian and Shanir haors in the Sunamganj district. A two-dimensional rainfall runoff inundation model was applied considering several scenarios for simulating heavy flash flood events in 2004, 2010, and 2016. Without an embankment, the river overflow would have entered the Matian haor 3 days, 22 days, and 9 days earlier in 2004, 2010, and 2016, respectively, whereas it would have been 7 days and 23 days earlier in 2004 and 2010 for the Shanir haor. The event in 2016 was successfully stopped by the Shanir haor embankment. To avoid river overflow entering into the Matian and Shanir haor completely, the embankment height must be elevated further by 1 m and 0.7 m, respectively. Providing proper drainage facilities for the accumulated rain water inside the hoar is still an important issue for protecting the crops effectively.


Author(s):  
Mohammed ABDEL-FATTAH ◽  
Sameh A. KANTOUSH ◽  
Mohamed SABER ◽  
Tetsuya SUMI

2008 ◽  
Vol 12 (4) ◽  
pp. 1039-1051 ◽  
Author(s):  
J. Younis ◽  
S. Anquetin ◽  
J. Thielen

Abstract. In Mediterranean Europe, flash flooding is one of the most devastating hazards in terms of loss of human life and infrastructures. Over the last two decades, flash floods have caused damage costing a billion Euros in France alone. One of the problems of flash floods is that warning times are very short, leaving typically only a few hours for civil protection services to act. This study investigates if operationally available short-range numerical weather forecasts together with a rainfall-runoff model can be used for early indication of the occurrence of flash floods. One of the challenges in flash flood forecasting is that the watersheds are typically small, and good observational networks of both rainfall and discharge are rare. Therefore, hydrological models are difficult to calibrate and the simulated river discharges cannot always be compared with ground measurements. The lack of observations in most flash flood prone basins, therefore, necessitates the development of a method where the excess of the simulated discharge above a critical threshold can provide the forecaster with an indication of potential flood hazard in the area, with lead times of the order of weather forecasts. This study is focused on the Cévennes-Vivarais region in the Southeast of the Massif Central in France, a region known for devastating flash floods. This paper describes the main aspects of using numerical weather forecasting for flash flood forecasting, together with a threshold – exceedance. As a case study the severe flash flood event which took place on 8–9 September 2002 has been chosen. Short-range weather forecasts, from the Lokalmodell of the German national weather service, are used as input for the LISFLOOD model, a hybrid between a conceptual and physically based rainfall-runoff model. Results of the study indicate that high resolution operational weather forecasting combined with a rainfall-runoff model could be useful to determine flash floods more than 24 h in advance.


Sign in / Sign up

Export Citation Format

Share Document