Effects of tree species on soil enzyme activities in natural mixed forest and monoculture plantations in Ethiopia

Author(s):  
Iftekhar Uddin Ahmed ◽  
Hodaddis K Mengistie ◽  
Hans Sandén ◽  
Douglas Godbold

<p>Soil extracellular enzymes are crucial for belowground functioning and are sensitive to anthropogenic land use change. The potential effects of tree species on soil microbial and biochemical properties provide crucial feedbacks on mineralization, a key ecosystem function beneath the tree canopy. In the highlands of northern Ethiopia, remnants of the original Afromontane forests are largely restricted to church forests with indigenous tree species. However the impacts on potential soil enzymatic activity by conversion of those forests to monocultures for wood production is largely unknown. We investigated potential soil enzyme activities under four indigenous tree species and adjacent <em>Eucalyptus globulus</em> and <em>Cupressus lusitanica</em> plantations in Gelawdios, Amhara Regional State, Ethiopia. The potential activities of six enzymes associated with soil C, N and P cycling were measured following the fluorometrically labelled substrates techniques. All enzymes exhibited significantly higher activities in soils under the indigenous trees than the plantation species except, N-acetylglucosaminidase, that was the highest in <em>Eucalyptus globulus</em> soil due to the ectomycorrhizae, associated with the <em>Eucalyptus</em> root systems. Among the four indigenous species <em>Apodytes dimidiata</em> showed the lowest activitie for most of the enzymes. A stronger positive correlation was observed between enzyme activity and total N than with total C in the soil. Acid phosphatase had the highest activity followed by  β-Glucosidase (482 and 167 nmol mg<sup>-1</sup> microbial biomass respectively). The activities of leucine aminopeptidase, β-xylosidase, N-Acetylglucosaminidase and cellobiohydrolase in soils under indigenous trees ranged between 63-23 nmol mg<sup>-1</sup> microbial biomass. The species specific effects of trees on soil enzyme activities indicate strong influence of tree traits on mineralization processes.     </p>

2018 ◽  
Vol 18 (5) ◽  
pp. 1971-1980 ◽  
Author(s):  
Li Xiao ◽  
Yimei Huang ◽  
Quanchao Zeng ◽  
Junfeng Zhao ◽  
Junying Zhou

Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1153
Author(s):  
Yage Li ◽  
Chun Han ◽  
Shan Sun ◽  
Changming Zhao

Long-term afforestation strongly changes the soil’s physicochemical and biological properties. However, the underlying mechanism of different tree species driving change in soil nutrients is still unclear in the long-term dryland plantations of the Loess Plateau, China. In this study, samples of surface soil (0–20 cm) and woody litter were collected from five plantations (≥50 years) of Caragana korshinskii, Armeniaca sibirica, Populus hopeiensis, Platycladus orientalis, and Pinus tabulaeformis and a natural grassland, and tested for the carbon, nitrogen, phosphorus, and potassium contents, as well as the soil sucrase (SC), urease (UE), and alkaline phosphorus (ALP) activities. We found that soil nutrients, enzyme activities, and the litter’s chemical properties obviously varied among five tree species. C. korshinskii significantly increased the soil’s TC, organic carbon (OC), total nitrogen (TN), available nitrogen (AN), and available potassium (AK) by 28.42%, 56.08%, 57.41%, 107.25%, and 10.29%, respectively, and also increased the soil’s available phosphorus (AP) by 18.56%; while P. orientalis significantly decreased soil TN (38.89%), TP (30.58%), AP (76.39%), TK (8.25%), and AK (8.33%), and also decreased soil OC (18.01%) and AN (1.09%), compared with those in grassland. The C. korshinskii plantation had higher quality litter and soil enzyme activities than the P. orientalis plantation. Moreover, 62.2% of the total variation in soil nutrients was explained by the litter’s chemical properties and soil enzyme activities, and the litter phosphorus (LP) and soil ALP had a more significant and positive impact on soil nutrients. Therefore, tree species, LP, and soil ALP were key factors driving soil nutrient succession in dryland plantations. The significantly positive nitrogen–phosphorus coupling relationship in the “litter–enzyme–soil” system revealed that the improving nitrogen level promoted the phosphorus cycle of the plantation ecosystem. Our results suggest that leguminous tree species are more suitable for dryland afforestation through the regulation of litter quality and soil enzyme activities.


2021 ◽  
Author(s):  
Chengjiao Duan ◽  
Yuxia Mei ◽  
Qiang Wang ◽  
Yuhan Wang ◽  
Qi Li ◽  
...  

Abstract Although some studies have reported an important role of rhizobia in mitigating heavy metal toxicity, the regulatory mechanism of the alfalfa-rhizobium symbiosis system to resist copper (Cu) stress through biochemical reactions in the plant-soil system is still unclear. Hence, this study assessed the effects of rhizobium inoculation (i.e., Sinorhizobium meliloti CCNWSX0020) on the growth of alfalfa and soil enzyme activities under Cu stress. Our results showed that rhizobium inoculation markedly alleviated Cu-induced growth inhibition by increasing chlorophyll content, height and biomass and the contents of nitrogen and phosphorus in alfalfa. The content of malondialdehyde (MDA) was increased in both shoot and root of alfalfa under Cu stress. The application of rhizobium alleviated Cu-induced phytotoxicity by increasing the activity of antioxidant enzymes and soluble protein content of tissues and inhibiting the level of lipid peroxidation (i.e., MDA level). In addition, rhizobium inoculation improved soil nutrient cycling, increased soil enzyme activities (i.e., β-glucosidase activity and alkaline phosphatase) and microbial biomass nitrogen. Both Pearson correlation coefficient analysis and partial least squares path modeling (PLS-PM) identified that the interactions between soil nutrient content, enzyme activity, microbial biomass and plant antioxidant enzymes and oxidative damage could jointly regulate plant growth. This study provides comprehensive insights into the mechanism of action of the legume-rhizobium symbiosis system to mitigate Cu stress and provide an efficient strategy for phytoremediation of Cu-polluted soils.


Sign in / Sign up

Export Citation Format

Share Document