scholarly journals Partitioning uncertainty components of an incomplete ensemble of climate projections using data augmentation

Author(s):  
Benoit Hingray ◽  
Guillaume Evin ◽  
Juliette Blanchet ◽  
Nicolas Eckert ◽  
Samuel Morin ◽  
...  

<p>The quantification of internal variability and model uncertainty sources in Multi-scenario Multi-model Ensembles of climate experiments (MMEs) is a key issue. It is expected to both help decision makers to identify robust adaptation measures and scientists to identify where their efforts are needed to narrow uncertainty. The setup of available MMEs makes however uncertainty analyses difficult. In the popular single-time ANOVA approach for instance, a precise estimate of internal variability requires multiple members for each simulation chain (e.g. each emission scenario/climate model combination) but multiple members are typically available for a few chains only (Hingray et al. 2019). In almost all ensembles also, the matrix of available scenario/models combinations is incomplete making a precise estimate of the main effects of each model difficult (e.g. projections are typically missing for some GCM/RCM combinations) (Evin et al. 2019).</p><p>We present QUALYPSO, a Bayesian approach developed to assess the different sources of uncertainty in incomplete MMEs (Evin et al. submitted). It is based on the quasi-ergodic assumption for transient climate projections and uses data augmentation (Hingray and Said, 2014). The climate response of each available simulation chain is first estimated with a trend model fitted to raw climate projections. Residuals from the climate change response are used to estimate the internal variability of the chain. Scenario uncertainty and the different components of model uncertainty (e.g. GCM uncertainty, RCM uncertainty) are then estimated with a Bayesian ANOVA model applied to the climate change responses of all available chains. The different parameters of the ANOVA model and the missing quantities associated to the missing chains (e.g. missing scenario/GCM/RCM combinations) are jointly estimated using data augmentation techniques.</p><p>QUALYPSO presents many advantages over classical estimation approaches. It first exploits all available experiments, avoiding a dramatic loss of information (the classical case when standard approaches are applied; where the typical solution is to select a complete subset of climate experiments). Along with the estimation of missing data, it also provides an assessment of the estimation uncertainty and adequately propagates the uncertainty due to missing chains. With the explicit treatment of missing experiments, it is then expected to produce unbiased estimates of all parameters, in contrast to direct empirical estimates.</p><p>QUALYPSO can be applied to any kind of climate variable and any kind of MMEs. We present examples of application for different hydroclimatic variables from different ensembles of projections including EUROCORDEX and CORDEX-Africa.</p><p>Hingray, B., Saïd, M., 2014. Partitioning internal variability and model uncertainty components in a multimodel multireplicate ensemble of climate projections. J.Climate.</p><p>Hingray, B., Blanchet, J., Evin, G. Vidal, J.P. 2019. Uncertainty components estimates in transient climate projections. Precision of estimators in the single time and time series approaches. Clim.Dyn.</p><p>Evin, G., Hingray, B., Blanchet, J., Eckert, N., Morin, S., Verfaillie, D. 2019. Partitioning uncertainty components of an incomplete ensemble of climate projections using data augmentation. J.Climate.</p><p>Evin, G., Hingray, B. Blanchet, J., Eckert, N., Menegoz, M. Morin, S. (revision). Partitioning uncertainty components of an incomplete ensemble of climate projections using smoothing splines. J.Climate.</p>

2018 ◽  
Vol 22 (5) ◽  
pp. 3087-3103 ◽  
Author(s):  
Huanghe Gu ◽  
Zhongbo Yu ◽  
Chuanguo Yang ◽  
Qin Ju ◽  
Tao Yang ◽  
...  

Abstract. An ensemble simulation of five regional climate models (RCMs) from the coordinated regional downscaling experiment in East Asia is evaluated and used to project future regional climate change in China. The influences of model uncertainty and internal variability on projections are also identified. The RCMs simulate the historical (1980–2005) climate and future (2006–2049) climate projections under the Representative Concentration Pathway (RCP) RCP4.5 scenario. The simulations for five subregions in China, including northeastern China, northern China, southern China, northwestern China, and the Tibetan Plateau, are highlighted in this study. Results show that (1) RCMs can capture the climatology, annual cycle, and interannual variability of temperature and precipitation and that a multi-model ensemble (MME) outperforms that of an individual RCM. The added values for RCMs are confirmed by comparing the performance of RCMs and global climate models (GCMs) in reproducing annual and seasonal mean precipitation and temperature during the historical period. (2) For future (2030–2049) climate, the MME indicates consistent warming trends at around 1 ∘C in the entire domain and projects pronounced warming in northern and western China. The annual precipitation is likely to increase in most of the simulation region, except for the Tibetan Plateau. (3) Generally, the future projected change in annual and seasonal mean temperature by RCMs is nearly consistent with the results from the driving GCM. However, changes in annual and seasonal mean precipitation exhibit significant inter-RCM differences and possess a larger magnitude and variability than the driving GCM. Even opposite signals for projected changes in average precipitation between the MME and the driving GCM are shown over southern China, northeastern China, and the Tibetan Plateau. (4) The uncertainty in projected mean temperature mainly arises from the internal variability over northern and southern China and the model uncertainty over the other three subregions. For the projected mean precipitation, the dominant uncertainty source is the internal variability over most regions, except for the Tibetan Plateau, where the model uncertainty reaches up to 60 %. Moreover, the model uncertainty increases with prediction lead time across all subregions.


2010 ◽  
Vol 23 (16) ◽  
pp. 4438-4446 ◽  
Author(s):  
Stephen S. Leroy ◽  
James G. Anderson

Abstract A complete accounting of model uncertainty in the optimal detection of climate signals requires normalization of the signals produced by climate models; however, there is not yet a well-defined rule for the normalization. This study seeks to discover such a rule. The authors find that, to arrive at the equations of optimal detection from a general application of Bayesian statistics to the problem of climate change, it is necessary to assume that 1) the prior probability density function (PDF) for climate change is separable into independent PDFs for sensitivity and the signals’ spatiotemporal patterns; 2) postfit residuals are due to internal variability and are normally distributed; 3) the prior PDF for sensitivity is uninformative; and 4) a continuum of climate models used to estimate model uncertainty gives a normally distributed PDF for the spatiotemporal patterns for the climate signals. This study also finds that the rule for normalization of the signals’ patterns is a simple division of model-simulated climate change in any observable quantity or set of quantities by a change in a single quantity of interest such as regionally averaged temperature or precipitation. With this normalization, optimal detection yields the most probable estimates of the underlying changes in the region of interest due to external forcings. Data outside the region of interest add information that effectively suppresses the interannual fluctuations associated with internal climate variability.


Author(s):  
Rowan Sutton ◽  
Emma Suckling ◽  
Ed Hawkins

The subject of climate feedbacks focuses attention on global mean surface air temperature (GMST) as the key metric of climate change. But what does knowledge of past and future GMST tell us about the climate of specific regions? In the context of the ongoing UNFCCC process, this is an important question for policy-makers as well as for scientists. The answer depends on many factors, including the mechanisms causing changes, the timescale of the changes, and the variables and regions of interest. This paper provides a review and analysis of the relationship between changes in GMST and changes in local climate, first in observational records and then in a range of climate model simulations, which are used to interpret the observations. The focus is on decadal timescales, which are of particular interest in relation to recent and near-future anthropogenic climate change. It is shown that GMST primarily provides information about forced responses, but that understanding and quantifying internal variability is essential to projecting climate and climate impacts on regional-to-local scales. The relationship between local forced responses and GMST is often linear but may be nonlinear, and can be greatly complicated by competition between different forcing factors. Climate projections are limited not only by uncertainties in the signal of climate change but also by uncertainties in the characteristics of real-world internal variability. Finally, it is shown that the relationship between GMST and local climate provides a simple approach to climate change detection, and a useful guide to attribution studies.


2014 ◽  
Vol 27 (17) ◽  
pp. 6779-6798 ◽  
Author(s):  
Benoit Hingray ◽  
Mériem Saïd

Abstract A simple and robust framework is proposed for the partitioning of the different components of internal variability and model uncertainty in an unbalanced multimember multimodel ensemble (MM2E) of climate projections obtained for a suite of statistical downscaling models (SDMs) and global climate models (GCMs). It is based on the quasi-ergodic assumption for transient climate simulations. Model uncertainty components are estimated from the noise-free signals of the different modeling chains using a two-way analysis of variance (ANOVA) framework. The residuals from the noise-free signals are used to estimate the large- and small-scale internal variability components associated with each considered GCM–SDM configuration. This framework makes it possible to take into account all members available from any climate ensemble of opportunity. Uncertainty is quantified as a function of lead time for projections of changes in temperature and precipitation produced for a mesoscale alpine catchment. Internal variability accounts for more than 80% of total uncertainty in the first decades. This proportion decreases to less than 10% at the end of the century for temperature but remains greater than 50% for precipitation. Small-scale internal variability is negligible for temperature; however, it is similar to the large-scale component for precipitation, whatever the projection lead time. SDM uncertainty is always greater than GCM uncertainty for precipitation. It is also greater for temperature in the middle of the century. The response-to-uncertainty ratio is very high for temperature. For precipitation, it is always less than one, indicating that even the sign of change is uncertain.


2019 ◽  
Vol 32 (8) ◽  
pp. 2423-2440 ◽  
Author(s):  
Guillaume Evin ◽  
Benoit Hingray ◽  
Juliette Blanchet ◽  
Nicolas Eckert ◽  
Samuel Morin ◽  
...  

Abstract The quantification of uncertainty sources in ensembles of climate projections obtained from combinations of different scenarios and climate and impact models is a key issue in climate impact studies. The small size of the ensembles of simulation chains and their incomplete sampling of scenario and climate model combinations makes the analysis difficult. In the popular single-time ANOVA approach for instance, a precise estimate of internal variability requires multiple members for each simulation chain (e.g., each emission scenario–climate model combination), but multiple members are typically available for a few chains only. In most ensembles also, a precise partition of model uncertainty components is not possible because the matrix of available scenario/models combinations is incomplete (i.e., projections are missing for many scenario–model combinations). The method we present here, based on data augmentation and Bayesian techniques, overcomes such limitations and makes the statistical analysis possible for single-member and incomplete ensembles. It provides unbiased estimates of climate change responses of all simulation chains and of all uncertainty variables. It additionally propagates uncertainty due to missing information in the estimates. This approach is illustrated for projections of regional precipitation and temperature for four mountain massifs in France. It is applicable for any kind of ensemble of climate projections, including those produced from ad hoc impact models.


2015 ◽  
Vol 12 (6) ◽  
pp. 5671-5701 ◽  
Author(s):  
A. Gobiet ◽  
M. Suklitsch ◽  
G. Heinrich

Abstract. This study discusses the effect of empirical-statistical bias correction methods like quantile mapping (QM) on the change signals of climate simulations. We show that QM regionally alters the mean temperature climate change signal (CCS) derived from the ENSEMBLES multi-model dataset by up to 15%. Such modification is currently strongly discussed and is often regarded as deficiency of bias correction methods. However, an analytical analysis reveals that this modification corresponds to the effect of intensity-dependent model errors on the CCS. Such errors cause, if uncorrected, biases in the CCS. QM removes these intensity-dependent errors and can therefore potentially lead to an improved CCS. A similar analysis as for the multi-model mean CCS has been conducted for the variance of CCSs in the multi-model ensemble. It shows that this indicator for model uncertainty is artificially inflated by intensity-dependent model errors. Therefore, QM has also the potential to serve as an empirical constraint on model uncertainty in climate projections. However, any improvement of simulated CCSs by empirical-statistical bias correction methods can only be realized, if the model error characteristics are sufficiently time-invariant.


2021 ◽  
Author(s):  
Christian Dieterich ◽  
Matthias Gröger ◽  
Anders Höglund ◽  
Renate A. I. Wilcke ◽  
H. E. Markus Meier

<p>Robust estimations of uncertainty for climate projections on the regional scale are highly needed but are still challenging. Regional climate projections rely on downscaling global climate scenarios. Typically, a number of different global climate models are downscaled to assess the inherent model uncertainty. The more models, the more robust the estimate of model uncertainty. However, this strategy is time consuming and so ensembles of regional projections are usually smaller than ensembles of global projections which can lead to an underestimation of regional uncertainty. With an increasing number of available global projections regional downscaling becomes increasingly expensive. We use a regional ensemble of coupled atmosphere-ice-ocean scenarios and a ensemble of ocean-ecosystem scenarios for the Baltic Sea to explore the effect of model selection on the representation of model uncertainty. Using a number of climate indices to characterize the regional system we apply a model selection that is representative of the original ensemble in terms of ensemble spread. We use existing algorithms to generate orthogonal patterns of climate change for the Baltic Sea. A small number of patterns is used to represent the climate change and its uncertainty in physical and biogeochemical parameters of the Baltic Sea. We show that climate change signals in atmosphere, ocean and ecosystem are coherent and that atmospheric or oceanic indices can be used to select global climate models for an ensemble of representative regional ecosystem scenarios for the Baltic Sea. Since the atmospheric climate in the regional climate model is close to its representation in the global climate model that latter can be used to perform an initial model selection.</p>


2009 ◽  
Vol 22 (6) ◽  
pp. 1469-1481 ◽  
Author(s):  
Mingfang Ting ◽  
Yochanan Kushnir ◽  
Richard Seager ◽  
Cuihua Li

Abstract In recent years, two alarming trends in North Atlantic climate have been noted: an increase in the intensity and frequency of Atlantic hurricanes and a rapid decrease in Greenland ice sheet volume. Both of these phenomena occurred while a significant warming took place in North Atlantic sea surface temperatures (SSTs), thus sparking a debate on whether the warming is a consequence of natural climate variations, anthropogenic forcing, or both; and if both, what their relative roles are. Here models and observations are used to detect and attribute long-term (multidecadal) twentieth-century North Atlantic (NA) SST changes to their anthropogenic and natural causes. A suite of Intergovernmental Panel on Climate Change (IPCC) twentieth-century (C20C) coupled model simulations with multiple ensemble members and a signal-to-noise maximizing empirical orthogonal function analysis are used to identify a model-based estimate of the forced, anthropogenic component in NA SST variability. Comparing the results to observations, it is argued that the long-term, observed, North Atlantic basin-averaged SSTs combine a forced global warming trend with a distinct, local multidecadal “oscillation” that is outside of the range of the model-simulated, forced component and most likely arose from internal variability. This internal variability produced a cold interval between 1900 and 1930, followed by 30 yr of relative warmth and another cold phase from 1960 to 1990, and a warming since then. This natural variation, referred to previously as the Atlantic Multidecadal Oscillation (AMO), thus played a significant role in the twentieth-century NA SST variability and should be considered in future, near-term climate projections as a mechanism that, depending on its behavior, can act either constructively or destructively with the region’s response to anthropogenic influence, temporarily amplifying or mitigating regional climate change.


Author(s):  
Gabriel Ribeiro ◽  
Marcos Yamasaki ◽  
Helon Vicente Hultmann Ayala ◽  
Leandro Coelho ◽  
Viviana Mariani

2019 ◽  
Vol 11 (4) ◽  
pp. 992-1000
Author(s):  
Jirawat Supakosol ◽  
Kowit Boonrawd

Abstract The purpose of this study is to investigate the future runoff into the Nong Han Lake under the effects of climate change. The hydrological model Soil and Water Assessment Tool (SWAT) has been selected for this study. The calibration and validation were performed by comparing the simulated and observed runoff from gauging station KH90 for the period 2001–2003 and 2004–2005, respectively. Future climate projections were generated by Providing Regional Climates for Impacts Studies (PRECIS) under the A2 and B2 scenarios. The SWAT model yielded good results in comparison to the baseline; moreover, the results of the PRECIS model showed that both precipitations and temperatures increased. Consequently, the amount of runoff calculated by SWAT under the A2 and B2 scenarios was higher than that for the baseline. In addition, the amount of runoff calculated considering the A2 scenario was higher than that considering the B2 scenario, due to higher average annual precipitations in the former case. The methodology and results of this study constitute key information for stakeholders, especially for the development of effective water management systems in the lake, such as designing a rule curve to cope with any future incidents.


Sign in / Sign up

Export Citation Format

Share Document