scholarly journals Optimal Detection of Regional Trends Using Global Data

2010 ◽  
Vol 23 (16) ◽  
pp. 4438-4446 ◽  
Author(s):  
Stephen S. Leroy ◽  
James G. Anderson

Abstract A complete accounting of model uncertainty in the optimal detection of climate signals requires normalization of the signals produced by climate models; however, there is not yet a well-defined rule for the normalization. This study seeks to discover such a rule. The authors find that, to arrive at the equations of optimal detection from a general application of Bayesian statistics to the problem of climate change, it is necessary to assume that 1) the prior probability density function (PDF) for climate change is separable into independent PDFs for sensitivity and the signals’ spatiotemporal patterns; 2) postfit residuals are due to internal variability and are normally distributed; 3) the prior PDF for sensitivity is uninformative; and 4) a continuum of climate models used to estimate model uncertainty gives a normally distributed PDF for the spatiotemporal patterns for the climate signals. This study also finds that the rule for normalization of the signals’ patterns is a simple division of model-simulated climate change in any observable quantity or set of quantities by a change in a single quantity of interest such as regionally averaged temperature or precipitation. With this normalization, optimal detection yields the most probable estimates of the underlying changes in the region of interest due to external forcings. Data outside the region of interest add information that effectively suppresses the interannual fluctuations associated with internal climate variability.

2018 ◽  
Vol 22 (5) ◽  
pp. 3087-3103 ◽  
Author(s):  
Huanghe Gu ◽  
Zhongbo Yu ◽  
Chuanguo Yang ◽  
Qin Ju ◽  
Tao Yang ◽  
...  

Abstract. An ensemble simulation of five regional climate models (RCMs) from the coordinated regional downscaling experiment in East Asia is evaluated and used to project future regional climate change in China. The influences of model uncertainty and internal variability on projections are also identified. The RCMs simulate the historical (1980–2005) climate and future (2006–2049) climate projections under the Representative Concentration Pathway (RCP) RCP4.5 scenario. The simulations for five subregions in China, including northeastern China, northern China, southern China, northwestern China, and the Tibetan Plateau, are highlighted in this study. Results show that (1) RCMs can capture the climatology, annual cycle, and interannual variability of temperature and precipitation and that a multi-model ensemble (MME) outperforms that of an individual RCM. The added values for RCMs are confirmed by comparing the performance of RCMs and global climate models (GCMs) in reproducing annual and seasonal mean precipitation and temperature during the historical period. (2) For future (2030–2049) climate, the MME indicates consistent warming trends at around 1 ∘C in the entire domain and projects pronounced warming in northern and western China. The annual precipitation is likely to increase in most of the simulation region, except for the Tibetan Plateau. (3) Generally, the future projected change in annual and seasonal mean temperature by RCMs is nearly consistent with the results from the driving GCM. However, changes in annual and seasonal mean precipitation exhibit significant inter-RCM differences and possess a larger magnitude and variability than the driving GCM. Even opposite signals for projected changes in average precipitation between the MME and the driving GCM are shown over southern China, northeastern China, and the Tibetan Plateau. (4) The uncertainty in projected mean temperature mainly arises from the internal variability over northern and southern China and the model uncertainty over the other three subregions. For the projected mean precipitation, the dominant uncertainty source is the internal variability over most regions, except for the Tibetan Plateau, where the model uncertainty reaches up to 60 %. Moreover, the model uncertainty increases with prediction lead time across all subregions.


2021 ◽  
Author(s):  
Sebastian Sippel ◽  
Nicolai Meinshausen ◽  
Eniko Székely ◽  
Erich Fischer ◽  
Angeline G. Pendergrass ◽  
...  

<p>Warming of the climate system is unequivocal and substantially exceeds unforced internal climate variability. Detection and attribution (D&A) employs spatio-temporal fingerprints of the externally forced climate response to assess the magnitude of a climate signal, such as the multi-decadal global temperature trend, while internal variability is often estimated from unforced (“control”) segments of climate model simulations (e.g. Santer et al. 2019). Estimates of the exact magnitude of decadal-scale internal variability, however, remain uncertain and are limited by relatively short observed records, their entanglement with the forced response, and considerable spread of simulated variability across climate models. Hence, a limitation of D&A is that robustness and confidence levels depend on the ability of climate models to correctly simulate internal variability (Bindoff et al., 2013).</p><p>For example, the large spread in simulated internal variability across climate models implies that the observed 40-year global mean temperature trend of about 0.76°C (1980-2019) would exceed the standard deviation of internally generated variability of a set of `low variability' models by far (> 5σ), corresponding to vanishingly small probabilities if taken at face value. But the observed trend would exceed the standard deviation of a few `high-variability' climate models `only' by a factor of about two, thus unlikely to be internally generated but not practically impossible given unavoidable climate system and observational uncertainties. This illustrates the key role of model uncertainty in the simulation of internal variability for D&A confidence estimates.</p><p>Here we use a novel statistical learning method to extract a fingerprint of climate change that is robust towards model differences and internal variability, even of large amplitude. We demonstrate that externally forced warming is distinct from internal variability and detectable with high confidence on any state-of-the-art climate model, even those that simulate the largest magnitude of unforced multi-decadal variability. Based on the median of all models, it is extremely likely that more than 85% of the observed warming trend over the last 40 years is externally driven. Detection remains robust even if their main modes of decadal variability would be scaled by a factor of two. It is extremely likely that at least 55% of the observed warming trend over the last 40 years cannot be explained by internal variability irrespective of which climate model’s natural variability estimates are used.</p><p>Our analysis helps to address this limitation in attributing warming to external forcing and provides a novel perspective for quantifying the magnitude of forced climate change even under uncertain but potentially large multi-decadal internal climate variability. This opens new opportunities to make D&A fingerprints robust in the presence of poorly quantified yet important features inextricably linked to model structural uncertainty, and the methodology may contribute to more robust detection and attribution of climate change to its various drivers.</p><p> </p><p>Bindoff, N.L., et al., 2013. Detection and attribution of climate change: from global to regional. IPCC AR5, WG1, Chapter 10.</p><p>Santer, B.D., et al., 2019. Celebrating the anniversary of three key events in climate change science. <em>Nat Clim Change</em> <strong>9</strong>(3), pp. 180-182.</p>


2006 ◽  
Vol 19 (17) ◽  
pp. 4294-4307 ◽  
Author(s):  
Xuebin Zhang ◽  
Francis W. Zwiers ◽  
P. A. Stott

Abstract Using an optimal detection technique and climate change simulations produced with two versions of two GCMs, we have assessed the causes of twentieth-century temperature changes from global to regional scales. Our analysis is conducted in nine spatial domains: 1) the globe; 2) the Northern Hemisphere; four large regions in the Northern Hemispheric midlatitudes covering 30°–70°N including 3) Eurasia, 4) North America, 5) Northern Hemispheric land only, 6) the entire 30°–70°N belt; and three smaller regions over 7) southern Canada, 8) southern Europe, and 9) China. We find that the effect of anthropogenic forcing on climate is clearly detectable at global through regional scales. The effect of combined greenhouse gases and sulfate aerosol forcing is detectable in all nine domains in annual and seasonal mean temperatures observed during the second half of the twentieth century. The effect of greenhouse gases can also be separated from that of sulfate aerosols over this period at continental and regional scales. Uncertainty in these results is larger in the smaller spatial domains. Detection is improved when an ensemble of models is used to estimate the response to anthropogenic forcing and the underlying internal variability of the climate system. Our detection results hold after removal of North Atlantic Oscillation (NAO)-related variability in temperature observations—variability that may or may not be associated with anthropogenic forcing. They also continue to hold when our estimates of natural internal climate variability are doubled.


2020 ◽  
Vol 24 (6) ◽  
pp. 3251-3269 ◽  
Author(s):  
Chao Gao ◽  
Martijn J. Booij ◽  
Yue-Ping Xu

Abstract. Projections of streamflow, particularly of extreme flows under climate change, are essential for future water resources management and the development of adaptation strategies to floods and droughts. However, these projections are subject to uncertainties originating from different sources. In this study, we explored the possible changes in future streamflow, particularly for high and low flows, under climate change in the Qu River basin, eastern China. ANOVA (analysis of variance) was employed to quantify the contribution of different uncertainty sources from RCPs (representative concentration pathways), GCMs (global climate models) and internal climate variability, using an ensemble of 4 RCP scenarios, 9 GCMs and 1000 simulated realizations of each model–scenario combination by SDRM-MCREM (a stochastic daily rainfall model coupling a Markov chain model with a rainfall event model). The results show that annual mean flow and high flows are projected to increase and that low flows will probably decrease in 2041–2070 (2050s) and 2071–2100 (2080s) relative to the historical period of 1971–2000, suggesting a higher risk of floods and droughts in the future in the Qu River basin, especially for the late 21st century. Uncertainty in mean flows is mostly attributed to GCM uncertainty. For high flows and low flows, internal climate variability and GCM uncertainty are two major uncertainty sources for the 2050s and 2080s, while for the 2080s, the effect of RCP uncertainty becomes more pronounced, particularly for low flows. The findings in this study can help water managers to become more knowledgeable about and get a better understanding of streamflow projections and support decision making regarding adaptations to a changing climate under uncertainty in the Qu River basin.


2016 ◽  
Vol 29 (10) ◽  
pp. 3661-3673 ◽  
Author(s):  
Ryan J. Kramer ◽  
Brian J. Soden

Abstract In response to rising CO2 concentrations, climate models predict that globally averaged precipitation will increase at a much slower rate than water vapor. However, some observational studies suggest that global-mean precipitation and water vapor have increased at similar rates. While the modeling results emphasize changes at multidecadal time scales where the anthropogenic signal dominates, the shorter observational record is more heavily influenced by internal variability. Whether the physical constraints on the hydrological cycle fundamentally differ between these time scales is investigated. The results of this study show that while global-mean precipitation is constrained by radiative cooling on both time scales, the effects of CO2 dominate on multidecadal time scales, acting to suppress the increase in radiative cooling with warming. This results in a smaller precipitation change compared to interannual time scales where the effects of CO2 forcing are small. It is also shown that intermodel spread in the response of atmospheric radiative cooling (and thus global-mean precipitation) to anthropogenically forced surface warming is dominated by clear-sky radiative processes and not clouds, while clouds dominate under internal variability. The findings indicate that the sensitivity of the global hydrological cycle to surface warming differs fundamentally between internal variability and anthropogenically forced changes and this has important implications for interpreting observations of the hydrological sensitivity.


2019 ◽  
Vol 156 (3) ◽  
pp. 299-314 ◽  
Author(s):  
Gabriel Rondeau-Genesse ◽  
Marco Braun

Abstract The pace of climate change can have a direct impact on the efforts required to adapt. For short timescales, however, this pace can be masked by internal variability (IV). Over a few decades, this can cause climate change effects to exceed what would be expected from the greenhouse gas (GHG) emissions alone or, to the contrary, cause slowdowns or even hiatuses. This phenomenon is difficult to explore using ensembles such as CMIP5, which are composed of multiple climate models and thus combine both IV and inter-model differences. This study instead uses CanESM2-LE and CESM-LE, two state-of-the-art large ensembles (LE) that comprise multiple realizations from a single climate model and a single GHG emission scenario, to quantify the relationship between IV and climate change over the next decades in Canada and the USA. The mean annual temperature and the 3-day maximum and minimum temperatures are assessed. Results indicate that under the RCP8.5, temperatures within most of the individual large ensemble members will increase in a roughly linear manner between 2021 and 2060. However, members of the large ensembles in which a slowdown of warming is found during the 2021–2040 period are two to five times more likely to experience a period of very fast warming in the following decades. The opposite scenario, where the changes expected by 2050 would occur early because of IV, remains fairly uncommon for the mean annual temperature, but occurs in 5 to 15% of the large ensemble members for the temperature extremes.


2020 ◽  
Author(s):  
James Murphy

<p>The challenge of combining initialised and uninitialised decadal projections</p><p>James Murphy, Robin Clark, Nick Dunstone, Glen Harris, Leon Hermanson and Doug Smith</p><p>During the past 10 years or so, exploratory work in initialised decadal climate prediction, using global climate models started from recent analyses of observations, has grown into a coordinated international programme that contributes to IPCC assessments. At the same time, countries have continued to develop and update their national climate change scenarios.  These typically cover the full 21<sup>st</sup> century, including the initial decade that overlaps with the latest initialised forecasts. To date, however, national scenarios continue to be based exclusively on long-term (uninitialised) climate change simulations, with initialised information regarded as a separate stream of information.</p><p>We will use early results from the latest UK national scenarios (UKCP), and the latest CMIP6 initialised predictions, to illustrate the potential and challenges associated with the notion of combining both streams of information. This involves assessing the effects of initialisation on predictability and uncertainty (as indicated, for example, by the skill of ensemble-mean forecasts and the spread amongst constituent ensemble members). Here, a particular challenge involves interpretation of the “signal-to-noise” problem, in which ensemble-mean skill can sometimes be found which is larger than would be expected on the basis of the ensemble spread. In addition to initialisation, we will also emphasise the importance of understanding how the assessment of climate risks depends on other features of prediction system design, including the sampling of model uncertainties and the simulation of internal climate variability.</p>


2020 ◽  
Author(s):  
Benoit Hingray ◽  
Guillaume Evin ◽  
Juliette Blanchet ◽  
Nicolas Eckert ◽  
Samuel Morin ◽  
...  

<p>The quantification of internal variability and model uncertainty sources in Multi-scenario Multi-model Ensembles of climate experiments (MMEs) is a key issue. It is expected to both help decision makers to identify robust adaptation measures and scientists to identify where their efforts are needed to narrow uncertainty. The setup of available MMEs makes however uncertainty analyses difficult. In the popular single-time ANOVA approach for instance, a precise estimate of internal variability requires multiple members for each simulation chain (e.g. each emission scenario/climate model combination) but multiple members are typically available for a few chains only (Hingray et al. 2019). In almost all ensembles also, the matrix of available scenario/models combinations is incomplete making a precise estimate of the main effects of each model difficult (e.g. projections are typically missing for some GCM/RCM combinations) (Evin et al. 2019).</p><p>We present QUALYPSO, a Bayesian approach developed to assess the different sources of uncertainty in incomplete MMEs (Evin et al. submitted). It is based on the quasi-ergodic assumption for transient climate projections and uses data augmentation (Hingray and Said, 2014). The climate response of each available simulation chain is first estimated with a trend model fitted to raw climate projections. Residuals from the climate change response are used to estimate the internal variability of the chain. Scenario uncertainty and the different components of model uncertainty (e.g. GCM uncertainty, RCM uncertainty) are then estimated with a Bayesian ANOVA model applied to the climate change responses of all available chains. The different parameters of the ANOVA model and the missing quantities associated to the missing chains (e.g. missing scenario/GCM/RCM combinations) are jointly estimated using data augmentation techniques.</p><p>QUALYPSO presents many advantages over classical estimation approaches. It first exploits all available experiments, avoiding a dramatic loss of information (the classical case when standard approaches are applied; where the typical solution is to select a complete subset of climate experiments). Along with the estimation of missing data, it also provides an assessment of the estimation uncertainty and adequately propagates the uncertainty due to missing chains. With the explicit treatment of missing experiments, it is then expected to produce unbiased estimates of all parameters, in contrast to direct empirical estimates.</p><p>QUALYPSO can be applied to any kind of climate variable and any kind of MMEs. We present examples of application for different hydroclimatic variables from different ensembles of projections including EUROCORDEX and CORDEX-Africa.</p><p>Hingray, B., Saïd, M., 2014. Partitioning internal variability and model uncertainty components in a multimodel multireplicate ensemble of climate projections. J.Climate.</p><p>Hingray, B., Blanchet, J., Evin, G. Vidal, J.P. 2019. Uncertainty components estimates in transient climate projections. Precision of estimators in the single time and time series approaches. Clim.Dyn.</p><p>Evin, G., Hingray, B., Blanchet, J., Eckert, N., Morin, S., Verfaillie, D. 2019. Partitioning uncertainty components of an incomplete ensemble of climate projections using data augmentation. J.Climate.</p><p>Evin, G., Hingray, B. Blanchet, J., Eckert, N., Menegoz, M. Morin, S. (revision). Partitioning uncertainty components of an incomplete ensemble of climate projections using smoothing splines. J.Climate.</p>


2015 ◽  
Vol 7 (1) ◽  
pp. 83-102 ◽  
Author(s):  
P. Sonali ◽  
D. Nagesh Kumar

This study analyzes the change in annual and seasonal maximum and minimum temperature (Tmax and Tmin) during the period 1950–2005 (i.e., second half of the 20th century). In-depth analyses have been carried out for all over India as well as for five temperature homogenous regions of India separately. First, the temporal variations of annual and seasonal Tmax and Tmin are analyzed, employing the trend free pre-whitening Mann-Kendall approach. Secondly, it is assessed whether the observations contain significant signals above the natural internal variability determined from a long ‘piControl’ experiment, using Monte Carlo simulation. Thirdly, fingerprint based formal detection and attribution analysis is used to determine the signal strengths of observed and model simulations with respect to different considered experiments. Finally, these signal strengths are compared to attribute the observed changes in Tmax and Tmin to different factors. All the model simulated datasets are retrieved from the CMIP5 archive. It is noticed that the emergence of observed trends is more pronounced in Tmin compared to Tmax. Although observed changes are not solely associated with one specific causative factor, most of the changes in Tmin lie above the bounds of natural internal climate variability.


2018 ◽  
Vol 99 (10) ◽  
pp. 2093-2106 ◽  
Author(s):  
Ambarish V. Karmalkar

AbstractTwo ensembles of dynamically downscaled climate simulations for North America—the North American Regional Climate Change Assessment Program (NARCCAP) and the Coordinated Regional Climate Downscaling Experiment (CORDEX) featuring simulations for North America (NA-CORDEX)—are analyzed to assess the impact of using a small set of global general circulation models (GCMs) and regional climate models (RCMs) on representing uncertainty in regional projections. Selecting GCMs for downscaling based on their equilibrium climate sensitivities is a reasonable strategy, but there are regions where the uncertainty is not fully captured. For instance, the six NA-CORDEX GCMs fail to span the full ranges produced by models in phase 5 of the Coupled Model Intercomparison Project (CMIP5) in summer temperature projections in the western and winter precipitation projections in the eastern United States. Similarly, the four NARCCAP GCMs are overall poor at spanning the full CMIP3 ranges in seasonal temperatures. For the Southeast, the NA-CORDEX GCMs capture the uncertainty in summer but not in winter projections, highlighting one consequence of downscaling a subset of GCMs. Ranges produced by the RCMs are often wider than their driving GCMs but are sensitive to the experimental design. For example, the downscaled projections of summer precipitation are of opposite polarity in two RCM ensembles in some regions. Additionally, the ability of the RCMs to simulate observed temperature trends is affected by the internal variability characteristics of both the RCMs and driving GCMs, and is not systematically related to their historical performance. This has implications for adequately sampling the impact of internal variability on regional trends and for using model performance to identify credible projections. These findings suggest that a multimodel perspective on uncertainties in regional projections is integral to the interpretation of RCM results.


Sign in / Sign up

Export Citation Format

Share Document