Was the onset of interhemispheric AMOC slightly prior to Antarctic glaciation at the Eocene-Oligocene transition?

Author(s):  
Meir Abelson ◽  
Jonathan Erez

<p>A compilation of benthic δ<sup>18</sup>O from the whole Atlantic and the Southern Ocean (Atlantic sector), shows two major jumps in the interbasinal gradient of d<sup>18</sup>O (Δδ<sup>18</sup>O) during the Eocene and the Oligocene: One at ~40 Ma and the second concomitant with the isotopic event of the Eocene-Oligocene transition (EOT), ~33.7 Ma ago. From previously published circulation models, we show that the first Δδ<sup>18</sup>O jump reflects the thermal isolation of Antarctica associated with the proto-Antarctic circumpolar current (ACC). The second marks the onset of interhemispheric northern-sourced circulation cell, similar to the modern Atlantic meridional overturning circulation (AMOC). The onset of AMOC-like circulation probably slightly preceded (100-300 ky) the EOT, as we show by the high resolution profiles of δ<sup>18</sup>O and δ<sup>13</sup>C previously published from DSDP/ODP sites in the Southern Ocean and South Atlantic. We suggest that while the shallow proto-ACC supplied the energy for deep ocean convection in the Southern Hemisphere, the onset of the interhemispheric northern circulation cell was due to the significant EOT intensification of deepwater formation in the North Atlantic driven by the Nordic anti-estuarine circulation. This onset of the interhemispheric northern-sourced circulation cell could have prompted the EOT global cooling.</p>

2014 ◽  
Vol 5 (1) ◽  
pp. 29-62
Author(s):  
D. Ehlert ◽  
A. Levermann

Abstract. The Atlantic meridional overturning circulation (AMOC) carries large amounts of heat into the North Atlantic influencing climate regionally as well as globally. Paleorecords and simulations with comprehensive climate models suggest that the positive salt-advection feedback may yield a threshold behaviour of the system. That is to say that beyond a certain amount of freshwater flux into the North Atlantic, no meridional overturning circulation can be sustained. Concepts of monitoring the AMOC and identifying its vicinity to the threshold rely on the fact that the volume flux defining the AMOC will be reduced when approaching the threshold. Here we advance conceptual models that have been used in a paradigmatic way to understand the AMOC, by introducing a density-dependent parameterization for the Southern Ocean eddies. This additional degree of freedom uncovers a mechanism by which the AMOC can increase with additional freshwater flux into the North Atlantic, before it reaches the threshold and collapses: an AMOC that is mainly wind-driven will have a constant upwelling as long as the Southern Ocean winds do not change significantly. The downward transport of tracers occurs either in the northern sinking regions or through Southern Ocean eddies. If freshwater is transported, either atmospherically or via horizontal gyres, from the low- to high-latitudes, this would reduce the eddy transport and by continuity increase the northern sinking which defines the AMOC until a threshold is reached at which the AMOC cannot be sustained. If dominant in the real ocean this mechanism would have significant consequences for monitoring the AMOC.


2014 ◽  
Vol 5 (2) ◽  
pp. 383-397
Author(s):  
D. Ehlert ◽  
A. Levermann

Abstract. The Atlantic meridional overturning circulation (AMOC) carries large amounts of heat into the North Atlantic influencing climate regionally as well as globally. Palaeo-records and simulations with comprehensive climate models suggest that the positive salt-advection feedback may yield a threshold behaviour of the system. That is to say that beyond a certain amount of freshwater flux into the North Atlantic, no meridional overturning circulation can be sustained. Concepts of monitoring the AMOC and identifying its vicinity to the threshold rely on the fact that the volume flux defining the AMOC will be reduced when approaching the threshold. Here we advance conceptual models that have been used in a paradigmatic way to understand the AMOC, by introducing a density-dependent parameterization for the Southern Ocean eddies. This additional degree of freedom uncovers a mechanism by which the AMOC can increase with additional freshwater flux into the North Atlantic, before it reaches the threshold and collapses: an AMOC that is mainly wind-driven will have a constant upwelling as long as the Southern Ocean winds do not change significantly. The downward transport of tracers occurs either in the northern sinking regions or through Southern Ocean eddies. If freshwater is transported, either atmospherically or via horizontal gyres, from the low to high latitudes, this would reduce the eddy transport and by continuity increase the northern sinking which defines the AMOC until a threshold is reached at which the AMOC cannot be sustained. If dominant in the real ocean this mechanism would have significant consequences for monitoring the AMOC.


2018 ◽  
Vol 48 (10) ◽  
pp. 2495-2506 ◽  
Author(s):  
Paola Cessi

AbstractThe current paradigm for the meridional overturning cell and the associated middepth stratification is that the wind stress in the subpolar region of the Southern Ocean drives a northward Ekman flow, which, together with the global diapycnal mixing across the lower boundary of the middepth waters, feeds the upper branch of the interhemispheric overturning. The resulting mass transport proceeds to the Northern Hemisphere of the North Atlantic, where it sinks, to be eventually returned to the Southern Ocean at depth. Seemingly, the wind stress in the Atlantic basin plays no role. This asymmetry occurs because the Ekman transport in the Atlantic Ocean is assumed to return geostrophically at depths much shallower than those occupied by the interhemispheric overturning. However, this vertical separation fails in the North Atlantic subpolar gyre region. Using a conceptual model and an ocean general circulation model in an idealized geometry, we show that the westerly wind stress in the northern part of the Atlantic provides two opposing effects. Mechanically, the return of the Ekman transport in the North Atlantic opposes sinking in this region, reducing the total overturning and deepening the middepth stratification; thermodynamically, the subpolar gyre advects salt poleward, promoting Northern Hemisphere sinking. Depending on which mechanism prevails, increased westerly winds in the Northern Hemisphere can reduce or augment the overturning.


2020 ◽  
Author(s):  
Yaci Alvarez ◽  
Andre Luiz Belem

<p>The western boundary regime of the tropical South Atlantic Ocean is the main pathway of an important meridional transfer of warm and cold water masses that balances the global temperature on Earth, known as Atlantic Meridional Overturning Circulation (AMOC). The AMOC is a system that depends on a delicate balance of temperature and salinity effects on density, and is considered one of the main elements of the terrestrial system. The objective of this work was to study the variability of the salinity in the Western Tropical Atlantic Ocean, in order to identify salt transport anomalies in the circulation of the Atlantic Meridional Overturning Circulation as a result of climate change. Based on 3 decades of hydrographic observations of the Northern Brazilian Current and of the Deep Western Boundary Current, neutral density surfaces, salinity anomalies, geostrophic transport and salt transport were calculated. In general, the results reveal a coherent decadal change in salinity in 5°S and 11°S. In the upper ocean, both water masses, the South Atlantic Central Water and the Antarctic Intermediate Water, presented an increase of the salinity. The Antarctic Intermediate Water shows small trends with a decrease in salinity values in the upper part of the layer and an increase at the border to the North Atlantic Deep Water. In the deep ocean, the North Atlantic Deep Water layers the salinity generally decreases and, as expected for a warmer ocean in the Southern Hemisphere, the Antarctic Bottom Water layer shows an increase in salinity. The geostrophic and salt transports suggest a multidecadal variability and the changes in upper layer salinity are consistent with an increased Agulhas leakage, as described in literature. In the deep ocean, water mass changes seem to be likely related to changes in weather patterns in the North Atlantic as well as in tropical circulation changes.</p>


2016 ◽  
Vol 29 (3) ◽  
pp. 941-962 ◽  
Author(s):  
Thomas L. Delworth ◽  
Fanrong Zeng

Abstract The impact of the North Atlantic Oscillation (NAO) on the Atlantic meridional overturning circulation (AMOC) and large-scale climate is assessed using simulations with three different climate models. Perturbation experiments are conducted in which a pattern of anomalous heat flux corresponding to the NAO is added to the model ocean. Differences between the perturbation experiments and a control illustrate how the model ocean and climate system respond to the NAO. A positive phase of the NAO strengthens the AMOC by extracting heat from the subpolar gyre, thereby increasing deep-water formation, horizontal density gradients, and the AMOC. The flux forcings have the spatial structure of the observed NAO, but the amplitude of the forcing varies in time with distinct periods varying from 2 to 100 yr. The response of the AMOC to NAO variations is small at short time scales but increases up to the dominant time scale of internal AMOC variability (20–30 yr for the models used). The amplitude of the AMOC response, as well as associated oceanic heat transport, is approximately constant as the time scale of the forcing is increased further. In contrast, the response of other properties, such as hemispheric temperature or Arctic sea ice, continues to increase as the time scale of the forcing becomes progressively longer. The larger response is associated with the time integral of the anomalous oceanic heat transport at longer time scales, combined with an increased impact of radiative feedback processes. It is shown that NAO fluctuations, similar in amplitude to those observed over the last century, can modulate hemispheric temperature by several tenths of a degree.


2021 ◽  
Author(s):  
Jing Sun ◽  
Mojib Latif ◽  
Wonsun Park

<p>There is a controversy about the nature of multidecadal climate variability in the North Atlantic (NA) region, concerning the roles of ocean circulation and atmosphere-ocean coupling. Here we describe NA multidecadal variability from a version of the Kiel Climate Model, in which both subpolar gyre (SPG)-Atlantic Meridional Overturning Circulation (AMOC) and atmosphere-ocean coupling are essential. The oceanic barotropic streamfuntions, meridional overturning streamfunctions, and sea level pressure are jointly analyzed to derive the leading mode of Atlantic variability. This mode accounting for about 23.7 % of the total combined variance is oscillatory with an irregular periodicity of 25-50 years and an e-folding time of about a decade. SPG and AMOC mutually influence each other and together provide the delayed negative feedback necessary for maintaining the oscillation. An anomalously strong SPG, for example, drives higher surface salinity and density in the NA’s sinking region. In response, oceanic deep convection and AMOC intensify, which, with a time delay of about a decade, reduces SPG strength by enhancing upper-ocean heat content. The weaker gyre circulation leads to lower surface salinity and density in the sinking region, which eventually reduces deep convection and AMOC strength. There is a positive ocean-atmosphere feedback between the sea surface temperature and low-level atmospheric circulation over the Southern Greenland area, with related wind stress changes reinforcing SPG changes, thereby maintaining the (damped) multidecadal oscillation against dissipation. Stochastic surface heat-flux forcing associated with the North Atlantic Oscillation drives the eigenmode.</p>


2013 ◽  
Vol 26 (18) ◽  
pp. 7187-7197 ◽  
Author(s):  
Wei Cheng ◽  
John C. H. Chiang ◽  
Dongxiao Zhang

Abstract The Atlantic meridional overturning circulation (AMOC) simulated by 10 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) for the historical (1850–2005) and future climate is examined. The historical simulations of the AMOC mean state are more closely matched to observations than those of phase 3 of the Coupled Model Intercomparison Project (CMIP3). Similarly to CMIP3, all models predict a weakening of the AMOC in the twenty-first century, though the degree of weakening varies considerably among the models. Under the representative concentration pathway 4.5 (RCP4.5) scenario, the weakening by year 2100 is 5%–40% of the individual model's historical mean state; under RCP8.5, the weakening increases to 15%–60% over the same period. RCP4.5 leads to the stabilization of the AMOC in the second half of the twenty-first century and a slower (then weakening rate) but steady recovery thereafter, while RCP8.5 gives rise to a continuous weakening of the AMOC throughout the twenty-first century. In the CMIP5 historical simulations, all but one model exhibit a weak downward trend [ranging from −0.1 to −1.8 Sverdrup (Sv) century−1; 1 Sv ≡ 106 m3 s−1] over the twentieth century. Additionally, the multimodel ensemble–mean AMOC exhibits multidecadal variability with a ~60-yr periodicity and a peak-to-peak amplitude of ~1 Sv; all individual models project consistently onto this multidecadal mode. This multidecadal variability is significantly correlated with similar variations in the net surface shortwave radiative flux in the North Atlantic and with surface freshwater flux variations in the subpolar latitudes. Potential drivers for the twentieth-century multimodel AMOC variability, including external climate forcing and the North Atlantic Oscillation (NAO), and the implication of these results on the North Atlantic SST variability are discussed.


2013 ◽  
Vol 9 (5) ◽  
pp. 2135-2151 ◽  
Author(s):  
C. Marzin ◽  
N. Kallel ◽  
M. Kageyama ◽  
J.-C. Duplessy ◽  
P. Braconnot

Abstract. Several paleoclimate records such as from Chinese loess, speleothems or upwelling indicators in marine sediments present large variations of the Asian monsoon system during the last glaciation. Here, we present a new record from the northern Andaman Sea (core MD77-176) which shows the variations of the hydrological cycle of the Bay of Bengal. The high-resolution record of surface water δ18O dominantly reflects salinity changes and displays large millennial-scale oscillations over the period 40 000 to 11 000 yr BP. Their timing and sequence suggests that events of high (resp. low) salinity in the Bay of Bengal, i.e. weak (resp. strong) Indian monsoon, correspond to cold (resp. warm) events in the North Atlantic and Arctic, as documented by the Greenland ice core record. We use the IPSL_CM4 Atmosphere-Ocean coupled General Circulation Model to study the processes that could explain the teleconnection between the Indian monsoon and the North Atlantic climate. We first analyse a numerical experiment in which such a rapid event in the North Atlantic is obtained under glacial conditions by increasing the freshwater flux in the North Atlantic, which results in a reduction of the intensity of the Atlantic meridional overturning circulation. This freshwater hosing results in a weakening of the Indian monsoon rainfall and circulation. The changes in the continental runoff and local hydrological cycle are responsible for an increase in salinity in the Bay of Bengal. This therefore compares favourably with the new sea water δ18O record presented here and the hypothesis of synchronous cold North Atlantic and weak Indian monsoon events. Additional sensitivity experiments are produced with the LMDZ atmospheric model to analyse the teleconnection mechanisms between the North Atlantic and the Indian monsoon. The changes over the tropical Atlantic are shown to be essential in triggering perturbations of the subtropical jet over Africa and Eurasia, that in turn affect the intensity of the Indian monsoon. These relationships are also found to be valid in additional coupled model simulations in which the Atlantic meridional overturning circulation (AMOC) is forced to resume.


Sign in / Sign up

Export Citation Format

Share Document