Assessment of the JULES model surface soil moisture using in-situ observations over the Brazilian North East semiarid region

Author(s):  
Marcelo Zeri ◽  
Karina Williams ◽  
Eleanor Blyth ◽  
Ana Paula Cunha ◽  
Toby Marthews ◽  
...  

<p>Monitoring of soil water is essential to assess drought risk over rainfed agriculture. Soil water indicates the onset or progress of dry spells, the start of the rainy season and good periods for sowing or harvesting. Monitoring soil water over rainfed agriculture can be a valuable tool to support field activities and the knowledge of climate risks.</p><p>A network of soil moisture sensors was established over the Brazilian North East semiarid region in 2015 with measurements at 10 and 20 cm, together with rainfall and other variables in a subset of locations. The data are currently being used to assess the available water over the region in monthly bulletins and reports of potential impacts on yields.</p><p>In this work, we present a comparison of a dataset of observations from 2015 to 2019 with the soil water estimated by the JULES land surface model (the Joint UK Land Environment Simulator). Overall, the model captures the spatial and temporal variability observed in the measured data well, with an average correlation coefficient of 0.6 across the domain. The performance was compared for each station, resulting in a selection of locations with significant correlation.</p><p>Based on the regression results, we derive modelled soil moisture for the time span of the JULES run (1979 to 2016). The modeled data enabled the calculation of a standardized soil moisture anomaly (SSMA). The values of SSMA in the period were in agreement with the patterns of drought in the region, especially the recent long-term drought in the Brazilian semiarid region, with significant dry years in 2012, 2013 and 2015. Further analysis will focus on comparisons with other drought indices and measures of impacts on yields at the municipality level.</p>

2021 ◽  
Author(s):  
Jaime Gaona ◽  
Pere Quintana-Seguí ◽  
Maria José Escorihuela

<p>Droughts in the Iberian Peninsula are a natural hazard of great relevance due to their recurrence, severity and impact on multiple environmental and socioeconomic aspects. The Ebro Basin, located in the NE of the Iberian Peninsula, is particularly vulnerable to drought with consequences on agriculture, urban water supply and hydropower. This study, performed within the Project HUMID (CGL2017-85687-R), aims at evaluating the influence of the climatic, land cover and soil characteristics on the interactions between rainfall, evapotranspiration and soil moisture anomalies which define the spatio-temporal drought patterns in the basin.</p><p>The onset, propagation and mitigation of droughts in the Iberian Peninsula is driven by anomalies of rainfall, evapotranspiration and soil moisture, which are related by feedback processes. To test the relative importance of such anomalies, we evaluate the contribution of climatic, land-cover and geologic heterogeneity on the definition of the spatio-temporal patterns of drought. We use the Köppen-Geiger climatic classification to assess how the contrasting climatic types within the basin determine differences on drought behavior. Land-cover types that govern the partition between evaporation and transpiration are also of great interest to discern the influence of vegetation and crop types on the anomalies of evapotranspiration across the distinct regions of the basin (e.g. forested mountains vs. crop-dominated areas). The third physical characteristic whose effect on drought we investigate is the impact of soil properties on soil moisture anomalies.</p><p>The maps and time series used for the spatio-temporal analysis are based on drought indices calculated with high-resolution datasets from remote sensing (MOD16A2ET and SMOS1km) and the land-surface model SURFEX-ISBA. The Standardized Precipitation Index (SPI), the EvapoTranspiration Deficit Index (ETDI) and the Soil Moisture Deficit Index (SMDI) are the three indices chosen to characterize the anomalies of the corresponding rainfall (atmospheric), evapotranspiration (atmosphere-land interface) and soil moisture (land) anomalies (components of the water balance). The comparison of the correlations of the indices (with different time lags) between contrasting regions offers insights about the impact of climate, land-cover and soil properties in the dominance, the timing of the response and memory aspects of the interactions. The high spatial and temporal resolution of remote sensing and land-surface model data allows adopting time and spatial scales suitable to investigate the influence of these physical factors with detail beyond comparison with ground-based datasets.</p><p>The spatial and temporal analysis prove useful to investigate the physical factors of influence on the anomalies between rainfall, evapotranspiration and soil moisture. This approach facilitates the physical interpretation of the anomalies of drought indices aiming to improve the characterization of drought in heterogeneous semi-arid areas like the Ebro River Basin.</p>


2021 ◽  
Vol 25 (8) ◽  
pp. 4259-4274
Author(s):  
Brandon P. Sloan ◽  
Sally E. Thompson ◽  
Xue Feng

Abstract. Plant transpiration downregulation in the presence of soil water stress is a critical mechanism for predicting global water, carbon, and energy cycles. Currently, many terrestrial biosphere models (TBMs) represent this mechanism with an empirical correction function (β) of soil moisture – a convenient approach that can produce large prediction uncertainties. To reduce this uncertainty, TBMs have increasingly incorporated physically based plant hydraulic models (PHMs). However, PHMs introduce additional parameter uncertainty and computational demands. Therefore, understanding why and when PHM and β predictions diverge would usefully inform model selection within TBMs. Here, we use a minimalist PHM to demonstrate that coupling the effects of soil water stress and atmospheric moisture demand leads to a spectrum of transpiration responses controlled by soil–plant hydraulic transport (conductance). Within this transport-limitation spectrum, β emerges as an end-member scenario of PHMs with infinite conductance, completely decoupling the effects of soil water stress and atmospheric moisture demand on transpiration. As a result, PHM and β transpiration predictions diverge most for soil–plant systems with low hydraulic conductance (transport-limited) that experience high variation in atmospheric moisture demand and have moderate soil moisture supply for plants. We test these minimalist model results by using a land surface model at an AmeriFlux site. At this transport-limited site, a PHM downregulation scheme outperforms the β scheme due to its sensitivity to variations in atmospheric moisture demand. Based on this observation, we develop a new “dynamic β” that varies with atmospheric moisture demand – an approach that overcomes existing biases within β schemes and has potential to simplify existing PHM parameterization and implementation.


2005 ◽  
Vol 18 (1) ◽  
pp. 21-40 ◽  
Author(s):  
Toshihisa Matsui ◽  
Venkataraman Lakshmi ◽  
Eric E. Small

Abstract Substantial evolution of Normalized Difference Vegetation Index (NVDI)-derived vegetation cover (Fg) exists in the southwestern United States and Mexico. The intraseasonal and wet-/dry-year fluctuations of Fg are linked to observed precipitation in the North American monsoon system (NAMS). The manner in which the spatial and temporal variability of Fg influences the land–atmosphere energy and moisture fluxes, and associated likelihood of moist convection in the NAMS regions, is examined. For this, the regional climate model (RCM) is employed, with three different Fg boundary conditions to examine the influence of intraseasonal and wet-/dry-year vegetation variability. Results show that a strong link exists between evaporative fraction (EF), surface temperature, and relative humidity in the boundary layer (BL), which is consistent with a positive soil moisture feedback. However, contrary to expectations, higher Fg does not consistently enhance EF across the NAMS region. This is because the low soil moisture values simulated by the land surface model (LSM) yield high canopy resistance values throughout the monsoon season. As a result, the experiment with the lowest Fg yields the greatest EF and precipitation in the NAMS region, and also modulates regional atmospheric circulation that steers the track of tropical cyclones. In conclusion, the simulated influence of vegetation on land–atmosphere exchanges depends strongly on the canopy stress index parameterized in the LSM. Therefore, a reliable dataset, at appropriate scales, is needed to calibrate transpiration schemes and to assess simulated and realistic vegetation–atmosphere interactions in the NAMS region.


2018 ◽  
Vol 19 (1) ◽  
pp. 3-25 ◽  
Author(s):  
S. Garrigues ◽  
A. Boone ◽  
B. Decharme ◽  
A. Olioso ◽  
C. Albergel ◽  
...  

Abstract This paper presents a comparison of two water transfer schemes implemented in land surface models: a three-layer bulk reservoir model based on the force–restore scheme (FR) and a multilayer soil diffusion scheme (DIF) relying on explicit mass-diffusive equations and a root profile. The performances of each model at simulating evapotranspiration (ET) over a 14-yr Mediterranean crop succession are compared when the standard pedotransfer estimates versus the in situ values of the soil parameters are used. The Interactions between Soil, Biosphere, and Atmosphere (ISBA) generic land surface model is employed. When the pedotransfer estimates of the soil parameters are used, the best performance scores are obtained with DIF. DIF provides more accurate simulations of soil evaporation and gravitational drainage. It is less sensitive to errors in the soil parameters compared to FR, which is strongly driven by the soil moisture at field capacity. When the in situ soil parameters are used, the performance of the FR simulations surpasses those of DIF. The use of the proper maximum available water content for the plant removes the bias in ET and soil moisture over the crop cycle with FR, while soil water stress is simulated too early and the transpiration is underestimated with DIF. Increasing the values of the root extinction coefficient and the proportion of homogeneous root distribution slightly improves the DIF performance scores. Spatiotemporal uncertainties in the soil parameters generate smaller uncertainties in ET simulated with DIF compared to FR, which highlights the robustness of DIF for large-scale applications.


2020 ◽  
Author(s):  
Zhongbo Su ◽  
Lianyu Yu ◽  
Yunfei Wang ◽  
Yijian Zeng

<p>In the current Earth System Model (ESM), the soil water and heat transport in the land surface model (LSM) is not strongly coupled. As such, the discrepancy between the modelled land surface states and fluxes and the observed ones was mainly remedied by revising relevant simplified parameters, while the detailed physics (and/or physiography) was not necessarily consistent. While zooming in those studies over the cold region, the current ESMs do not consider the hydro-permafrost-carbon coupling. For example, the strong impact of soil moisture on spatial patterns of soil carbon stocks has been observed at sites, while the current ESMs cannot show this impact. On the other hand, soil moisture can affect the temperature sensitivity of decomposition rate and alter soil thermal dynamics significantly. To address the foregoing issues, it calls for an interdisciplinary approach to investigate soil-water-energy-plant interactions. Such approach is even more so desired for cold regions, where permafrost and seasonal frozen ground widely spread. This pressing need is mainly due to the carbon release from climate-induced permafrost thawing into the atmosphere, called as permafrost carbon feedback (PCF). It is also due to the tight coupling between hydrological processes and carbon dynamics, which, if ignored, will lead to the underestimation of global carbon turnover time by 36%. As a trial, this research coupled the detailed soil water and heat model with the biogeochemical model to investigate the mechanisms behind the impacts of enhanced soil water and heat dynamics on ecosystem functioning.</p>


2020 ◽  
Author(s):  
Adam Pasik ◽  
Bernhard Bauer-Marschallinger ◽  
Wolfgang Preimesberger ◽  
Tracy Scanlon ◽  
Wouter Dorigo ◽  
...  

<p>Multiple satellite-based global surface soil moisture (SSM) datasets are presently available, these however, address exclusively the top layer of the soil (0-5cm). Meanwhile, root-zone soil moisture cannot be directly quantified with remote sensing but can be estimated from SSM using a land surface model. Alternatively, soil water index (SWI; calculated from SSM as a function of time needed for infiltration) can be used as a simple approximation of root-zone conditions. SWI is a proxy for deeper layers of the soil profile which control evapotranspiration, and is hence especially important for studying hydrological processes over vegetation-covered areas and meteorological modelling. <br>Here we present the first long-term SWI dataset from ESA CCI Soil Moisture v04.5 COMBINED product, covering a 40-year period between 1978 and 2018. The ESA CCI dataset is unique because of its long-term global coverage based on merged observations from both active and passive sensors. The SWI is calculated for eight T-values (1, 5, 10, 15, 20, 40, 60, 100), where T-value is a temporal length ruling the infiltration; depending on the soil characteristics it translates into different soil depths.<br>Primary results show promise for pursuing development of an operational SWI product. Here, we present the results of SWI validation against data from the International Soil Moisture Network (ISMN) using the QA4SM framework, as well as results of the attempt to establish relationship between T-values and particular soil depths.</p>


2021 ◽  
Vol 22 (5) ◽  
pp. 1065-1084
Author(s):  
Anne Felsberg ◽  
Gabriëlle J. M. De Lannoy ◽  
Manuela Girotto ◽  
Jean Poesen ◽  
Rolf H. Reichle ◽  
...  

AbstractThis global feasibility study assesses the potential of coarse-scale, gridded soil water estimates for the probabilistic modeling of hydrologically triggered landslides, using Soil Moisture Ocean Salinity (SMOS), Soil Moisture Active Passive (SMAP), and Gravity Recovery and Climate Experiment (GRACE) remote sensing data; Catchment Land Surface Model (CLSM) simulations; and six data products based on the assimilation of SMOS, SMAP, and/or GRACE observations into CLSM. SMOS or SMAP observations (~40-km resolution) are only available for less than 20% of the globally reported landslide events, because they are intermittent and uncertain in regions with complex terrain. GRACE terrestrial water storage estimates include 75% of the reported landslides but have coarse spatial and temporal resolutions (monthly, ~300 km). CLSM soil water simulations have the added advantage of complete spatial and temporal coverage, and are found to be able to distinguish between “stable slope” (no landslide) conditions and landslide-inducing conditions in a probabilistic way. Assimilating SMOS and/or GRACE data increases the landslide probability estimates based on soil water percentiles for the reported landslides, relative to model-only estimates at 36-km resolution for the period 2011–16, unless the CLSM model-only soil water content is already high (≥50th percentile). The SMAP Level 4 data assimilation product (at 9-km resolution, period 2015–19) more generally updates the soil water conditions toward higher landslide probabilities for the reported landslides, but is similar to model-only estimates for the majority of landslides where SMAP data cannot easily be converted to soil moisture owing to complex terrain.


2014 ◽  
Vol 15 (4) ◽  
pp. 1636-1650 ◽  
Author(s):  
Youlong Xia ◽  
Michael B. Ek ◽  
David Mocko ◽  
Christa D. Peters-Lidard ◽  
Justin Sheffield ◽  
...  

Abstract This study analyzed uncertainties and correlations over the United States among four ensemble-mean North American Land Data Assimilation System (NLDAS) percentile-based drought indices derived from monthly mean evapotranspiration ET, total runoff Q, top 1-m soil moisture SM1, and total column soil moisture SMT. The results show that the uncertainty is smallest for SM1, largest for SMT, and moderate for ET and Q. The strongest correlation is between SM1 and SMT, and the weakest correlation is between ET and Q. The correlation between ET and SM1 (SMT) is strongest in arid–semiarid regions, and the correlation between Q and SM1 (SMT) is strongest in more humid regions in the Pacific Northwest and the Southeast. Drought frequency analysis shows that SM1 has the most frequent drought occurrence, followed by SMT, Q, and ET. The study compared the NLDAS drought indices (a research product) with the U.S. Drought Monitor (USDM; an operational product) in terms of drought area percentage derived from each product. It proposes an optimal blend of NLDAS drought indices by searching for weights for each index that minimizes the RMSE between NLDAS and USDM drought area percentage for a 10-yr period (2000–09) with a cross validation. It reconstructed a 30-yr (1980–2009) Objective Blended NLDAS Drought Index (OBNDI) and monthly drought percentage. Overall, the OBNDI performs the best with the smallest RMSE, followed by SM1 and SMT. It should be noted that the contribution to OBNDI from different variables varies with region. So a single formula is probably not the best representation of a blended index. The representation of a blended index using the multiple formulas will be addressed in a future study.


2018 ◽  
Vol 10 (10) ◽  
pp. 1575 ◽  
Author(s):  
Bin Fang ◽  
Venkat Lakshmi ◽  
Rajat Bindlish ◽  
Thomas Jackson

Soil moisture (SM) applications in terrestrial hydrology require higher spatial resolution soil moisture products than those provided by passive microwave remote sensing instruments (grid resolution of 9 km or larger). In this investigation, an innovative algorithm that uses visible/infrared remote sensing observations to downscale Advanced Microwave Scanning Radiometer 2 (AMSR2) coarse spatial resolution SM products was developed and implemented for use with data provided by the Advanced Microwave Scanning Radiometer 2 (AMSR2). The method is based on using the Normalized Difference Vegetation Index (NDVI) modulated relationships between day/night SM and temperature change at corresponding times. Land surface model output variables from the North America Land Data Assimilation System (NLDAS), remote sensing data from the Moderate-Resolution Imaging Spectroradiometer (MODIS), and Advanced Very High Resolution Radiometer (AVHRR) were used in this methodology. The functional relationships developed using NLDAS data at a grid resolution of 12.5 km were applied to downscale AMSR2 JAXA (Japan Aerospace Exploration Agency) SM product (25 km) using MODIS land surface temperature (LST) and NDVI observations (1 km) to produce the 1 km SM estimates. The downscaled SM estimates were validated by comparing them with ISMN (International Soil Moisture Network) in situ SM in the Black Bear–Red Rock watershed, central Oklahoma between 2015–2017. The overall statistical variables of the downscaled AMSR2 SM validation R2, slope, RMSE and bias, demonstrate good accuracy. The downscaled SM better characterized the spatial and temporal variability of SM at watershed scales than the original SM product.


2011 ◽  
Vol 12 (4) ◽  
pp. 531-555 ◽  
Author(s):  
Yun Fan ◽  
Huug M. van den Dool ◽  
Wanru Wu

Abstract Several land surface datasets, such as the observed Illinois soil moisture dataset; three retrospective offline run datasets from the Noah land surface model (LSM), Variable Infiltration Capacity (VIC) LSM, and Climate Prediction Center leaky bucket soil model; and three reanalysis datasets (North American Regional Reanalysis, NCEP/Department of Energy Global Reanalysis, and 40-yr ECMWF Re-Analysis), are used to study the spatial and temporal variability of soil moisture and its response to the major components of land surface hydrologic cycles: precipitation, evaporation, and runoff. Detailed analysis was performed on the evolution of the soil moisture vertical profile. Over Illinois, model simulations are compared to observations, but for the United States as a whole some impressions can be gained by comparing the multiple soil moisture–precipitation–evaporation–runoff datasets to one another. The magnitudes and partitioning of major land surface water balance components on seasonal–interannual time scales have been explored. It appears that evaporation has the most prominent annual cycle but its interannual variability is relatively small. For other water balance components, such as precipitation, runoff, and surface water storage change, the amplitudes of their annual cycles and interannual variations are comparable. This study indicates that all models have a certain capability to reproduce observed soil moisture variability on seasonal–interannual time scales, but offline runs are decidedly better than reanalyses (in terms of validation against observations) and more highly correlated to one another (in terms of intercomparison) in general. However, noticeable differences are also observed, such as the degree of simulated drought severity and the locations affected—this is due to the uncertainty in model physics, input forcing, and mode of running (interactive or offline), which continue to be major issues for land surface modeling.


Sign in / Sign up

Export Citation Format

Share Document