Global Seismic Risk Assessment: the Wrong, the Right, and the Truth

Author(s):  
Vitor Silva

<p>The increase in the global population, climate change, growing urbanization and settlement in regions prone to natural hazards are some of the factors contributing to the increase in the economic and human losses due to disasters. Earthquakes represent on average approximately one-fifth of the annual losses, but in some years this proportion can be above 50% (e.g. 2010, 2011). This impact can affect the sustainable development of society, creation of jobs and availability of funds for poverty reduction. Furthermore, business disruption of large corporations can result in negative impacts at global scale. Earthquake risk information can be used to support decision-makers in the distribution of funds for effective risk mitigation. However, open and reliable probabilistic seismic risk models are only available for less than a dozen of countries, which dampers disaster risk management, in particular in the under-developed world. To mitigate this issue, the Global Earthquake Model Foundation and its partners have been supporting regional programmes and bilateral collaborations to develop an open global earthquake risk model. These efforts led to the development of a repository of probabilistic seismic hazard models, a global exposure dataset, and a comprehensive set of fragility and vulnerability functions for the most common building classes. These components were used to estimate relevant earthquake risk metrics, which are now publicly available to the community.</p><p>The development of the global seismic risk model also allowed the identification of several issues that affect the reliability and accuracy of existing risk models. These include the use of outdated exposure information, insufficient consideration of all sources of epistemic and aleatory uncertainty, lack of results regarding indirect human and economic losses, and inability to forecast detailed earthquake risk to the upcoming decades. These challenges may render the results from existing earthquake loss models inadequate for decision-making. It is thus urgent to re-evaluate the current practice in earthquake risk loss assessment, and explore new technologies, knowledge and data that might mitigate some of these issues. A recent resource that can support the improvement of exposure datasets and the forecasting of exposure and risk into the next decades is the Global Human Settlement Layer, a collection of datasets regarding the built-environment between 1974 and 2010. The consideration of this type of information and incorporation of large sources of uncertainty can now be supported by artificial intelligence technology, and in particular open-source machine learning platforms. Such tools are currently being explored to predict earthquake aftershocks, to estimate damage shortly after the occurrence of destructive events, and to perform complex calculations with billions of simulations. These are examples of recent resources that must be exploited for the benefit of improving existing risk models, and consequently enhance the likelihood that risk reduction measures will be efficient.</p><p>This study presents the current practice in global seismic risk assessment with all of its limitations, it discusses the areas where improvements are necessary, and presents possible directions for risk assessment in the upcoming years.</p>

2021 ◽  
Author(s):  
Vitor Silva

<p>The increase in the global population, climate change, growing urbanization and settlement in regions prone to natural hazards are some of the factors contributing to the increase in the economic and human losses due to disasters. Earthquakes represent on average approximately one-fifth of the annual losses, but in some years this proportion can be above 50% (e.g. 2010, 2011). This impact can affect the sustainable development of society, creation of jobs and availability of funds for poverty reduction. Furthermore, business disruption of large corporations can result in negative impacts at global scale. Earthquake risk information can be used to support decision-makers in the distribution of funds for effective risk mitigation. However, open and reliable probabilistic seismic risk models are only available for less than a dozen of countries, which dampers disaster risk management, in particular in the under-developed world. To mitigate this issue, the Global Earthquake Model Foundation and its partners have been supporting regional programmes and bilateral collaborations to develop an open global earthquake risk model. These efforts led to the development of a repository of probabilistic seismic hazard models, a global exposure dataset, and a comprehensive set of fragility and vulnerability functions for the most common building classes. These components were used to estimate relevant earthquake risk metrics, which are now publicly available to the community.</p><p>The development of the global seismic risk model also allowed the identification of several issues that affect the reliability and accuracy of existing risk models. These include the use of outdated exposure information, insufficient consideration of all sources of epistemic and aleatory uncertainty, lack of results regarding indirect human and economic losses, and inability to forecast detailed earthquake risk to the upcoming decades. These challenges may render the results from existing earthquake loss models inadequate for decision-making. It is thus urgent to re-evaluate the current practice in earthquake risk loss assessment, and explore new technologies, knowledge and data that might mitigate some of these issues. A recent resource that can support the improvement of exposure datasets and the forecasting of exposure and risk into the next decades is the Global Human Settlement Layer, a collection of datasets regarding the built-environment between 1974 and 2010. The consideration of this type of information and incorporation of large sources of uncertainty can now be supported by artificial intelligence technology, and in particular open-source machine learning platforms. Such tools are currently being explored to predict earthquake aftershocks, to estimate damage shortly after the occurrence of destructive events, and to perform complex calculations with billions of simulations. These are examples of recent resources that must be exploited for the benefit of improving existing risk models, and consequently enhance the likelihood that risk reduction measures will be efficient.</p><p>This study presents the current practice in global seismic risk assessment with all of its limitations, it discusses the areas where improvements are necessary, and presents possible directions for risk assessment in the upcoming years.</p>


2009 ◽  
Vol 25 (3) ◽  
pp. 619-641 ◽  
Author(s):  
J. S.R. Prasad ◽  
Yogendra Singh ◽  
Amir M. Kaynia ◽  
Conrad Lindholm

A seismic risk assessment methodology based on socioeconomic clustering of urban habitat is presented in this paper. In this methodology, the city is divided into different housing clusters based on socioeconomic level of occupants, representing reasonably uniform seismic risk. It makes an efficient utilization of high resolution satellite data and stratified random sample survey to develop the building stock database. Ten different classes of socioeconomic clusters found in Indian cities are defined and 34 model building types (MBTs) prevalent on the Indian subcontinent have been identified and compared with the Medvedev-Sponheuer-Karnik (MSK) scale, European macroseismic scale (EMS), parameterless scale of seismic intensity (PSI), and HAZUS classifications. Lower and upper bound damage probability matrices (DPMs) are estimated, based on the MSK and EMS intensity scales and experience from past earthquakes in India. A case study of Dehradun, a city in the foothills of Himalayas, is presented. The risk estimates using the estimated DPMs have been compared with those obtained using the PSI scale. It has been observed that poorer people are subjected to higher seismic risk, both in terms of casualties and in terms of percent economic losses.


Author(s):  
Thomas Wischgoll ◽  
Tara C. Hutchinson ◽  
Falko Kuester

Due to an increasing bandwidth for data transport in recent computers, optical (camera-based) sensors with high frame rates and reasonable resolutions can nowadays be used with off-the-shelf computers. By monitoring buildings, bridges and other infrastructure with such sensors, they can greatly assist in risk assessment. In this paper, several field application examples are described, largely encompassing the areas of civil infrastructure monitoring. Optical (camera-based) systems can be particularly powerful for monitoring both local and global movements within a scene or environment. Therefore, natural hazards induced by such movements, for example during earthquake events, are an important application area for these new technologies. First, a clear definition of seismic risk assessment is provided. Subsequently, two important fields where cameras may be useful in seismic risk assessment are described. Specifically, the context of (i) early warning systems and (ii) post-earthquake assessment are addressed. An example of using the optical record from a series of large shake table tests is provided and comparison with other methods discussed.


2020 ◽  
Vol 36 (1_suppl) ◽  
pp. 345-371
Author(s):  
Anirudh Rao ◽  
Debashish Dutta ◽  
Pratim Kalita ◽  
Nick Ackerley ◽  
Vitor Silva ◽  
...  

This study presents a comprehensive open probabilistic seismic risk model for India. The proposed model comprises a nationwide residential and non-residential building exposure model, a selection of analytical seismic vulnerability functions tailored for Indian building classes, and the open implementation of an existing probabilistic seismic hazard model for India. The vulnerability of the building exposure is combined with the seismic hazard using the stochastic (Monte Carlo) event-based calculator of the OpenQuake engine to estimate probabilistic seismic risk metrics such as average annual economic losses and the exceedance probability curves at the national, state, district, and subdistrict levels. The risk model and the underlying datasets, along with the risk metrics calculated at different scales, are intended to be used as tools to quantitatively assess the earthquake risk across India and also compare with other countries to develop risk-informed building design guidelines, for more careful land-use planning, to optimize earthquake insurance pricing, and to enhance general earthquake risk awareness and preparedness.


2010 ◽  
Vol 26 (4) ◽  
pp. 967-982 ◽  
Author(s):  
M. Altug Erberik

Unreinforced and non-engineered masonry buildings are highly vulnerable to seismic hazard and constitute a significant percentage of earthquake losses, including both casualties and economic losses. This study presents an engineering application on seismic safety assessment of unreinforced masonry (URM) buildings in Istanbul, Turkey, a metropolitan city under very high seismic risk. Nearly 20,000 masonry buildings were examined through a two-stage assessment procedure in order to identify the addresses of those buildings which are under high seismic risk. Furthermore, the obtained database can be employed in the preparation of an earthquake mitigation strategy for the expected major earthquake in Istanbul. In the first-stage evaluation, buildings are examined visually from the street by considering their basic structural parameters and they are ranked within a priority list in terms of the calculated seismic risk. Next, the buildings identified with higher risk are evaluated in the second stage by using a more detailed procedure. The developed procedure is both an optimal and a practical tool in the seismic risk assessment of large masonry building stocks in a short period of time with limited resources.


2021 ◽  
Vol 16 (1) ◽  
pp. 111-119
Author(s):  
Noor Suhaiza Sauti ◽  
Mohd Effendi Daud ◽  
Masiri Kaamin ◽  
Suhaila Sahat

This research was conducted with a view to updating the management of earthquakes through an exposure vulnerability and potential seismic risk assessment, along with its application in Sabah (a state in East Malaysia). A set of indicators and methodologies has been proposed in this study with the goal of evaluating the level of exposure vulnerability and potential risk of certain locations to earthquake events at the local district scale. This study specifically involves the development of exposure vulnerability indicators; the statistical analysis method to standardize multivariate data together with a weight calculation of indicator variables; and a mathematical combination of different indicators for the development of the index map using the spatial analysis function of Geographical Information System (GIS) tools. Then, the derived exposure vulnerability index (EVI) map is overlaid with the seismic hazard in determining the geographical location of the most vulnerable areas and their exposure to seismic hazard events. As a result, and based on the available data, the exposure vulnerability index map shows that most districts in Sabah are at relatively low and moderate levels of risk except for a few districts, with several major cities in Sabah, such as Kota Kinabalu, Penampang, Sandakan and Tawau municipality, being situated at a high or very high exposure index. The combination of EVI maps and hazard maps indicate the dominance of the two factors influencing the potential level of earthquake risk. Studies reveal most of the southwest and central parts of the region are not at risk, as both exposure and hazard factors are at a low level. The proposed approach depicts an instrument for identifying cost-effective risk reduction initiatives by providing a scientific method for regional risk planning and management strategies. This research represents the first attempt to evaluate Sabah’s vulnerability to this type of natural disaster by understanding the spatial relationship between exposure vulnerability and earthquake hazard, which undoubtedly could be improved in several aspects.


2019 ◽  
Vol 13 (1) ◽  
pp. 308-318 ◽  
Author(s):  
Vladislav Zaalishvili ◽  
Olga Burdzieva ◽  
Aleksandr Kanukov ◽  
Dmitry Melkov

Aim: The goal of the work was to develop and implement a methodology for the expected seismic risk assessment of a modern city on the example of a test area of Vladikavkaz city. Background: The selected area is characterized by a variety of soil conditions typical for the entire territory of the city. At the same time, building stock includes almost all types of buildings that form the urban environment. Objective: Based on the differentiation of soil conditions, the test area was conditionally divided into 6 sites. Further, site effects of every site were estimated (seismic microzonation work was carried out). Expected seismic intensity (MSK-64) of the sites varied within 7-9 points. Each type of building is characterized by a certain vulnerability to a particular level of seismic impact. Method: The work is focused on the implementation of simple and effective statistical concepts of the MSK-64 scale for the development of express seismic risk assessment methodology. Different soils and types of buildings in different combination caused a different level of expected economic losses. Further, on the basis of taking into account the expected damage in the building stock of Kuybyshev Street, the expected social losses were calculated. In this regard, it is of interest to analyze the seismic risk variations along Kuybyshev Street, which is actually a model of the city. Conclusion: The suggested methodology gives a rapid express assessment of seismic risk for decision making on buildings enforcement on a city level. Seismic risk methodology was corrected for new types of buildings (“Vesna” region) and it was shown that the MSK scale is effective but must be also actualized itself.


Author(s):  
Mário Marques ◽  
Ricardo Monteiro ◽  
Raimundo Delgado

Purpose Portugal experienced very destructive earthquakes in the past, such as the well-known “Lisbon earthquake” in 1755. With such in mind, accurate estimates of human and economic losses can play a significant role in providing various societal key players with objective information for response strategies. This paper aims to present the contribution of the most recent study in Portugal (PRISE) concerning comprehensive seismic risk assessment, which can be used as good practice and reproduced in different contexts. Design/methodology/approach PRISE (earthquake loss assessment of the Portuguese building stock) covered three main lines of research, corresponding to the three components typically considered in any seismic risk assessment study: the characterization of the seismic hazard, the identification of the exposure to earthquakes and loss potential and the vulnerability of the exposed assets. Each of these components has been fully characterized through the collection of census and local data (exposure), used to carry out nonlinear analysis (hazard and fragility). Findings By involving different research institutions and partners with extensive knowledge and expertise in the earthquake domains, the developed model is capable of producing economic and human earthquake loss estimates in real time (through an innovative Web-based platform) or for specific event scenarios, considering exposed population, residential and industrial buildings. The platform uses open-source tools and hence, it can be reproduced in other countries or contexts. Research limitations/implications Research wise, the hazard, vulnerability and exposure models can still be significantly improved, e.g. by adding critical infrastructure (hospitals, school buildings and bridges) or updating the nonlinear models, for more accurate loss predictions. Practical implications The findings and loss estimates for different earthquake scenarios show that planned interventions are required. Decision-makers and other relevant stakeholders (Civil Protection) can make use of the developed platform to produce specific estimates, to test the effect of different retrofitting interventions or to plan for emergency scenarios. Originality/value A real-time Web-based framework to estimate building damage and economic/human losses because of seismic events has been developed, aiming to provide the Portuguese Civil Protection and other playmakers with a unique platform for planning and preparing for emergency scenarios.


Author(s):  
Max Wyss

This article discusses the importance of assessing and estimating the risk of earthquakes. It begins with an overview of earthquake prediction and relevant terms, namely: earthquake hazard, maximum credible earthquake magnitude, exposure time, earthquake risk, and return time. It then considers data sources for estimating seismic hazard, including catalogs of historic earthquakes, measurements of crustal deformation, and world population data. It also examines ways of estimating seismic risk, such as the use of probabilistic estimates, deterministic estimates, and the concepts of characteristic earthquake, seismic gap, and maximum rupture length. A loss scenario for a possible future earthquake is presented, and the notion of imminent seismic risk is explained. Finally, the chapter addresses errors in seismic risk estimates and how to reduce seismic risk, ethical and moral aspects of seismic risk assessment, and the outlook concerning seismic risk assessment.


Author(s):  
S. T. Algermissen

The principal elements of seismic risk assessment are outlined. An approach to seismic risk assessment is developed that provides quite satisfactory risk assessments on a scale of a single structure to regional assessments of risk. An example of a contemporary risk assessment is discussed and the development of a data base for routine risk assessments is advocated.


Sign in / Sign up

Export Citation Format

Share Document