Regional-residual separation of microgravity data based on data clustering

Author(s):  
Hyoungrea Rim ◽  
Gyesoon Park ◽  
Chang-Ryol Kim

<p>we propose a method to apply the polynomial fitting for regional-residual separation of microgravity data based on the characteristics of gravity anomaly without a prior information. Since the microgravity survey is usually carried out in small regions, it is common to approximate regional anomaly by the first-order polynomial plane. However, if the regional anomaly patterns are unsuited to be approximated to a first-order plane, the complete gravity anomaly is divided into small zones enough to approximate first-order plane by means of Parasnis density estimation method. The regional-residual separation is then applied on the splitted zones individually. When the gravity anomalies can be splitted spatially, we showed that the residual anomalies can be more effectively extracted based on the regional geological structures by regional anomaly separation from each of the divided regions, rather than applying the entire data set at one time.</p><p>Acknowledgment: This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2019R1F1A1055093).</p>

2021 ◽  
Author(s):  
Mirko Scheinert ◽  
Philipp Zingerle ◽  
Theresa Schaller ◽  
Roland Pail ◽  
Martin Willberg

<p>In the frame of the IAG Subcommission 2.4f “Gravity and Geoid in Antarctica” (AntGG) a first Antarctic-wide grid of ground-based gravity anomalies was released in 2016 (Scheinert et al. 2016). That data set was provided with a grid space of 10 km and covered about 73% of the Antarctic continent. Since then a considerably amount of new data has been made available, mainly collected by means of airborne gravimetry. Regions which were formerly void of any terrestrial gravity observations and have now been surveyed include especially the polar data gap originating from GOCE satellite gravimetry. Thus, it is timely to come up with an updated and enhanced regional gravity field solution for Antarctica. For this, we aim to improve further aspects in comparison to the AntGG 2016 solution: The grid spacing will be enhanced to 5 km. Instead of providing gravity anomalies only for parts of Antarctica, now the entire continent should be covered. In addition to the gravity anomaly also a regional geoid solution should be provided along with further desirable functionals (e.g. gravity anomaly vs. disturbance, different height levels).</p><p>We will discuss the expanded AntGG data base which now includes terrestrial gravity data from Antarctic surveys conducted over the past 40 years. The methodology applied in the analysis is based on the remove-compute-restore technique. Here we utilize the newly developed combined spherical-harmonic gravity field model SATOP1 (Zingerle et al. 2019) which is based on the global satellite-only model GOCO05s and the high-resolution topographic model EARTH2014. We will demonstrate the feasibility to adequately reduce the original gravity data and, thus, to also cross-validate and evaluate the accuracy of the data especially where different data set overlap. For the compute step the recently developed partition-enhanced least-squares collocation (PE-LSC) has been used (Zingerle et al. 2021, in review; cf. the contribution of Zingerle et al. in the same session). This method allows to treat all data available in Antarctica in one single computation step in an efficient and fast way. Thus, it becomes feasible to iterate the computations within short time once any input data or parameters are changed, and to easily predict the desirable functionals also in regions void of terrestrial measurements as well as at any height level (e.g. gravity anomalies at the surface or gravity disturbances at constant height).</p><p>We will discuss the results and give an outlook on the data products which shall be finally provided to present the new regional gravity field solution for Antarctica. Furthermore, implications for further applications will be discussed e.g. with respect to geophysical modelling of the Earth’s interior (cf. the contribution of Schaller et al. in session G4.3).</p>


2013 ◽  
Vol 748 ◽  
pp. 590-594
Author(s):  
Li Liao ◽  
Yong Gang Lu ◽  
Xu Rong Chen

We propose a novel density estimation method using both the k-nearest neighbor (KNN) graph and the potential field of the data points to capture the local and global data distribution information respectively. The clustering is performed based on the computed density values. A forest of trees is built using each data point as the tree node. And the clusters are formed according to the trees in the forest. The new clustering method is evaluated by comparing with three popular clustering methods, K-means++, Mean Shift and DBSCAN. Experiments on two synthetic data sets and one real data set show that our approach can effectively improve the clustering results.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 560 ◽  
Author(s):  
Lin Shi ◽  
Baofeng Guo ◽  
Ning Han ◽  
Juntao Ma ◽  
Xiaoxiu Zhu ◽  
...  

The linear geometry distortion caused by time variant bistatic angles induces the sheared shape of the bistatic inverse synthetic aperture radar (bistatic-ISAR) image. A linear geometry distortion alleviation algorithm for space targets in bistatic-ISAR systems is presented by exploiting prior information. First, we analyze formation mathematics of linear geometry distortions in the Range Doppler (RD) domain. Second, we estimate coefficients of first-order polynomial of bistatic angles by least square error (LSE) method through exploiting the imaging geometry and orbital information of space targets. Third, we compensate the linear spatial-variant terms to restore the linear geometry distortions. Consequently, the restored bistatic-ISAR image with real shape is obtained. Simulated results of the ideal point scatterers dataset and electromagnetic numerical dataset verify the performance of the proposed algorithm.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. J51-J58 ◽  
Author(s):  
João B. Silva ◽  
Denis C. Costa ◽  
Valéria C. Barbosa

We present a method to estimate the basement relief as well as the density contrast at the surface and the hyperbolic decaying factor of the density contrast with depth, assuming that the gravity anomaly and the depth to the basement at a few points are known. In both cases, the interpretation model is a set of vertical rectangular 2D prisms whose thicknesses are parameters to be estimated and that represent the depth to the interface separating sediments and basement. The solutions to both problems are stable because of the incorporation of additional prior information about the smoothness of the estimated relief and the depth to the basement at a few locations, presumably provided by boreholes. The method was tested with synthetic gravity anomalies produced by simulated sedimentary basins with smooth relief, providing not only well-resolved estimated relief, but also good estimates for the density contrasts at the surface and for the decaying factors of the density contrast with depth. The method was applied to the Bouguer anomaly from Recôncavo Basin, estimating the surface density contrast and the decaying factor of the density contrast with depth as [Formula: see text] and [Formula: see text], respectively.


2018 ◽  
Vol 84 (11) ◽  
pp. 74-87
Author(s):  
V. B. Bokov

A new statistical method for response steepest improvement is proposed. This method is based on an initial experiment performed on two-level factorial design and first-order statistical linear model with coded numerical factors and response variables. The factors for the runs of response steepest improvement are estimated from the data of initial experiment and determination of the conditional extremum. Confidence intervals are determined for those factors. The first-order polynomial response function fitted to the data of the initial experiment makes it possible to predict the response of the runs for response steepest improvement. The linear model of the response prediction, as well as the results of the estimation of the parameters of the linear model for the initial experiment and factors for the experiments of the steepest improvement of the response, are used when finding prediction response intervals in these experiments. Kknowledge of the prediction response intervals in the runs of steepest improvement of the response makes it possible to detect the results beyond their limits and to find the limiting values of the factors for which further runs of response steepest improvement become ineffective and a new initial experiment must be carried out.


Geosciences ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 329
Author(s):  
Mahdi O. Karkush ◽  
Mahmood D. Ahmed ◽  
Ammar Abdul-Hassan Sheikha ◽  
Ayad Al-Rumaithi

The current study involves placing 135 boreholes drilled to a depth of 10 m below the existing ground level. Three standard penetration tests (SPT) are performed at depths of 1.5, 6, and 9.5 m for each borehole. To produce thematic maps with coordinates and depths for the bearing capacity variation of the soil, a numerical analysis was conducted using MATLAB software. Despite several-order interpolation polynomials being used to estimate the bearing capacity of soil, the first-order polynomial was the best among the other trials due to its simplicity and fast calculations. Additionally, the root mean squared error (RMSE) was almost the same for the all of the tried models. The results of the study can be summarized by the production of thematic maps showing the variation of the bearing capacity of the soil over the whole area of Al-Basrah city correlated with several depths. The bearing capacity of soil obtained from the suggested first-order polynomial matches well with those calculated from the results of SPTs with a deviation of ±30% at a 95% confidence interval.


2020 ◽  
Vol 1651 ◽  
pp. 012060
Author(s):  
Fujian Feng ◽  
Shuang Liu ◽  
Yongzheng Pan ◽  
Xin He ◽  
Jiayin Wei ◽  
...  

Geophysics ◽  
2021 ◽  
pp. 1-91
Author(s):  
Hang Wang ◽  
Liuqing Yang ◽  
Xingye Liu ◽  
Yangkang Chen ◽  
Wei Chen

The local slope estimated from seismic images has a variety of meaningful applications. Slope estimation based on the plane-wave destruction (PWD) method is one of the widely accepted techniques in the seismic community. However, the PWD method suffers from its sensitivity to noise in the seismic data. We propose an improved slope estimation method based on the PWD theory that is more robust in the presence of strong random noise. The PWD operator derived in the Z-transform domain contains a phase-shift operator in space corresponding to the calculation of the first-order derivative of the wavefield in the space domain. The first-order derivative is discretized based on a forward finite difference in the traditional PWD method, which lacks the constraint from the backward direction. We propose an improved method by discretizing the first-order space derivative based on an averaged forward-backward finite-difference calculation. The forward-backward space derivative calculation makes the space-domain first-order derivative more accurate and better anti-noise since it takes more space grids for the derivative calculation. In addition, we introduce non-stationary smoothing to regularize the slope estimation and to make it even more robust to noise. We demonstrate the performance of the new slope estimation method by several synthetic and field data examples in different applications, including 2D/3D structural filtering, structure-oriented deblending, and horizon tracking.


Sign in / Sign up

Export Citation Format

Share Document